20
21
22
23
24
25
26
27
28
29
30
31

32

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Configuration Defects in Kubernetes

Yue Zhang, Uchswas Paul, Marcelo d’Amorim, and Akond Rahman, Member, IEEE

Abstract—Kubernetes is a tool that facilitates rapid deployment of software. Unfortunately, configuring Kubernetes is prone to errors.
Configuration defects are not uncommon and can result in serious consequences. This paper reports an empirical study about
configuration defects in Kubernetes with the goal of helping practitioners detect and prevent these defects. We study 719 defects that
we extract from 2,260 Kubernetes configuration scripts using open source repositories. Using qualitative analysis, we identify 15
categories of defects, of which 7 have not been reported in previously-studied software systems. We find 8 publicly available static
analysis tools to be capable of detecting 8 of the 15 defect categories. We find that the highest precision and recall of those tools are for
defects related to data fields. We develop a linter to detect two categories of defects that cause serious consequences, which none of
the studied tools are able to detect. Our linter revealed 26 previously-unknown defects that have been confirmed by practitioners, 19 of
which have already been fixed. We conclude our paper by providing recommendations on how defect detection and repair techniques
can be used for Kubernetes configuration scripts. The datasets and source code used for the paper are publicly available online.

Index Terms—configuration, container orchestration, defect, devops, empirical study, Kubernetes

1 INTRODUCTION

HE use of multiple containers to deploy software
Tprojects is a common practice today [102], e.g., Pay-
pal uses 200,000 containers to speed up financial transac-
tions [70]. Setting up and managing multiple containers
manually is considered impractical and prone to errors [22],
[78], [91]]. For that reason, the practice of container orches-
tration advocates for automated management of containers with
tools, such as Kubernetes [77] that has yielded benefits
for organizations [58]. OpenAl reported that Kubernetes
enabled a reduction of deployment time from “a couple
of months” to “two or three days.” [58] Kubernetes usage
aided Adidas to reduce the load time for their e-commerce
website by half, and increase the release frequency from
once every 4~6 weeks to 3~4 times a day [58]].

Unfortunately, Kubernetes configuration scripts are not im-
mune to defects. In March 2023, the social media platform
Reddit experienced a 5 hour-long outage that impacted mil-
lions of its users [51], [83]]. The outage occurred because of a
defect in a configuration script affecting the network traffic
between containers [50], [51]. Figure [I| presents an YAML
code snippet showcasing how certain Kubernetes-related
configurations were specified when the outage occurred.
The defect is due to the incorrect definition of configura-
tion options nodeSelector and peerSelector, which
used the value node-role.kubernetes.io/master in-
stead of node-role.kubernetes.io/control-plane.
The string master in the configuration value became ob-
solete with the release of Kubernetes 1.24 [57]]. The enti-
ties nodeSelector and peerSelector are responsible
to route the network traffic across containers. As a result
of this defect, traffic was routed to a destination that does

Yue Zhang is with the Department of Computer Science and Software
Engineering, Auburn University, Auburn, Alabama, USA

Uchswas Paul is with the Department of Computer Science, NC State
University, Raleigh, NC, USA

Marcelo d’Amorim is with the Department of Computer Science, NC State
University, Raleigh, NC, USA

Akond Rahman is with the Department of Computer Science and Software
Engineering, Auburn University, Auburn, Alabama, USA

metadata:
annotations:
spec:
asNumber: 0
— nodeSelector:
+ nodeSelector:
peerIP: ", "
— peerSelector:
+ peerSelector:

has (node-role.kubernetes.io/master)
has (node-role.kubernetes.io/control-plane)

has (node-role.kubernetes.io/master)
has (node-role.kubernetes.io/control-plane)

Fig. 1: Excerpt of the configuration defect that caused the
Reddit outage [51].

not exist, resulting in the outage. This defect illustrates
the importance of understanding configuration defects in
Kubernetes-related computing infrastructure.

Our paper presents an empirical study about configuration
defects in Kubernetes with the goals of assisting practitioners
in preventing defects and guiding researchers in developing auto-
mated tools to detect those defects. The results of the study en-
able researchers and practitioners (i) to gain insights about
the defects in Kubernetes-based computing infrastructure;
(ii) to assess the capabilities of existing tools in identifying
defects; and (iii) to develop techniques to identify latent
defects that occur during Kubernetes-based configuration
management.

While the importance of defect categorization has been
well-acknowledged in software engineering research [21],
[45], [82], a systematic characterization of defects related
to Kubernetes configuration management remains under
explored. The paper addresses the two following key as-
pects: (i) an in-depth study on root causes of defects, their
consequences, and fix patterns for Kubernetes configuration
scripts; and (ii) an exploratory study of the ability to detect
static analysis tools. Although there are prior empirical
studies on Kubernetes including prior publications from the
authors of this paper [75], [77], [85]], [86], [103], [113], these
publications have not addressed how configurations of
Kubernetes-based deployments are specified, and how these

33
34

35

36
37
38
39
40
#
42
43
44

45

46
47
48
49
50
51
52
53
54
55
56
57

58

N o o A W N =

37

38
39
40
41
42
43
44

45

46
47
48
49
50
51
52

53

54

55

56

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

specifications can result in defects. The novelty of this paper
stems from expanding and detailing the understanding of
defects in this domain. We systematically characterize how
configuration-related defects occur using code constructs in
configuration scripts. This characterization resulted in 15
defect categories, 7 of which have not been reported for
previously-studied software systems [42], [76], [88], [104] as
well as for Kubernetes-related research investigations [12],
[15], 1751, 1771, (84186, [103], [113].

We answer the following research questions:

« RQ1 [Categories]: What are the categories of defects in
Kubernetes configuration management?

o RQ2 [Consequences and Fix Patterns]: What categories
of consequences and fix patterns map to defects that occur
during Kubernetes configuration management?

o RQ3 [Tool Support]: How frequently do static analysis
tools support the detection of defects that occur during
Kubernetes configuration management?

We analyze 719 defects that occur in 2,260 configuration
scripts mined from 185 open source software (OSS) reposi-
tories. We use a qualitative analysis technique called open
coding [81] with the obtained data to derive defect cate-
gories, consequences, and fix patterns. Using the data, we
systematically evaluate the defect detection capabilities of 8
publicly available static analysis tools for Kubernetes. Our
empirical study provides insights on the nature of config-
uration defects and identifies opportunities for developing
defect detection techniques for Kubernetes. For example, we
find that 533 of the 719 defects are found to cause crashes,
incorrect operations, or outages. We construct a linter that
detects two categories of defects that cause serious con-
sequences, such as crashes and outages. These two defect
categories are not detected by any of the 8 studied tools.
With the help of the linter, we have identified 26 previously-
unknown defects that have been confirmed by practitioners,
and 19 have already been fixed.

Contributions: We list our contributions as follows:

o An evaluation on the performance of static analysis tools
to detect defects that occur during Kubernetes configura-
tion management (Section ;

o A categorization of consequences and fix patterns for
defects that occur during Kubernetes configuration man-
agement (Section ; and

o A list of derived defect categories for Kubernetes configu-
ration management (Section [3.2).

Dataset Awvailability: Datasets and source code used in
our paper are publicly available online [112]. The dataset
contains data where each of the 719 defects is mapped to
their corresponding defect category, consequence, and fix
pattern. Source code to construct our linter is available. To
further support reproducibility, we have made ConShifu
available as a Docker image [111]], along with instructions
on how to install and run the tool.

2 BACKGROUND

Kubernetes is the most popular tool to implement container
orchestration. Any computing infrastructure managed by

Control Plane Kubernetes Nodes

Node-1 \

Controller
POD-1 POD-2
/”
API Server [v] [
POD-3
N J
= \
\ Node-2
4 \
\
\
® \
[l — POD-4 POD-5
N NN

Developer Script

Fig. 2: An overview of the components in a Kubernetes
cluster.

Kubernetes is referred to as a Kubernetes cluster [59]]. Ku-
bernetes uses objects to provision the cluster computing
infrastructure. An object is a persistent entity representing
the state of the cluster. A pod is a common kind of object;
it is the most fundamental deployment unit that groups
multiple containers together. Configurations for pods and
other Kubernetes entities are specified using configuration
scripts that are typically written in the YAML format. As
Figure 2| shows, the API server stores configurations in a
database called ‘etcd.” With the provided configurations,
the API server decides which pods can host the given
containers. A controller and scheduler are automated agents
that control the state of the Kubernetes to identify a suitable
node for a pod. A configuration script can either be a Kind
script or a Helm script [77].

Kind script: Kind scripts contain configurations for kind,
which is a specific type of Kubernetes object. Kind scripts
are executed using Kubernetes-provided utilities, such as
‘kubectl’ [59]. Listing[T]shows an example of a pod specified
with a Kind script. This script defines a pod that runs a
single container using the image ‘myimage.’

Helm script: Helm is a package manager for Kuber-
netes that simplifies configuration management for Kuber-
netes [13]. A Helm script is developed using YAML, and a
group of Helm scripts is referred to as a Helm chart. In a
Helm chart, variables and default configuration values are
defined in a script labeled as ‘values.yaml.” [13] These vari-
ables and configuration values are loaded dynamically into
scripts called ‘templates’ through template directives [13].
Listing [2| shows an example of a template.

3 RQ1: CATEGORIES OF DEFECTS IN KUBER-
NETES CONFIGURATION SCRIPTS

We provide the methodology and results for RQ1 respec-

tively, in Sections[3.I]and

3.1 Methodology
We use the following steps:

3.1.1 Identify Defects from OSS projects
We follow three steps to identify defects.

Step#1 - Mine OSS repositories from GitHub: We iden-
tify defects by mining OSS repositories hosted on GitHub,

57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76

77

78
79
80
81
82
83
84
85
86

87

88

89

90

91

92

93

94

95

96

20
21
22
23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

apivVersion: vl
kind: Pod
metadata:

name: mypod
spec:

containers:

— name: mycontainer
image: myimage
ports:

- containerPort: 80

S e ®N U W N

Listing 1: An example of a Kind script.

1 # configuration values defined in a Helm script, Dvalues.yamlﬂ
2 replicaCount: 2 > Configuration value for spec.replicas
3 service:

4 portName: https --

5 portHttps: 80 --> Co

6 # configuration values

7 spec:

8 replicas: {{ .Values.replicaCount }} —--> Tem

9 ports:

10 — name: {{ .Values.service.portName }}

11 - port: {{ .Values.service.portHttps }}

12 — protocol: TCP

Listing 2: An example of a Helm script.

which is the most popular code hosting platform [71]. We
mine repositories using the GHTorrent archive [37] that is
hosted on Google Big Query. However, as publicly-available
GitHub repositories are susceptible to quality issues [71],
we apply the following filtering criteria: Criterion-1: Repos-
itory must be publicly available and contain the ‘Kuber-
netes’ label to ensure that the repositories are Kubernetes
relevant [77]]; Criterion-2: At least 10% of the files in the
repository are YAML files and each file must use Kuber-
netes objects (e.g., Pod, Service, Deployment, etc) to collect
repositories that contain sufficient amount of configuration
scripts for analysis; Criterion-3: The repository is not a copy
of another repository; and Criterion-4: The repository has at
least ten contributors. We use a threshold of ten contributors
to ensure a higher likelihood that the repository represents a
more collaborative and active project, reducing the chances
of including repositories used for academic or personal
projects. Prior research [76] has also used the threshold of
at least 10 contributors.

As shown in Table we collect 185 OSS Kubernetes
repositories from GitHub repositories. We clone the master
branches of the 185 repositories. We provide attributes of
the mined 185 repositories in Table In all we collect 44,401
configuration scripts.

Step#2 - Mine Commits and Issue Reports from 185
OSS Kubernetes repositories: We download the 185 OSS
Kubernetes repositories on March 2024 to conduct our anal-
ysis. From the downloaded repositories, we mine 417,598
commits and 140,872 issue reports. To identify commits
and issue reports that are related to defects, we use the
following steps: Step-1: We filter issue reports by checking
if the issue is closed and has a pull request to ensure we
have sufficient content to derive fix patterns; Step-2: We
apply a keyword search similar to prior work [76]. We
use following keywords: ‘bug,” ‘defect,” ‘error,” ‘fault,” “fix,’
‘flaw,” ‘incorrect,” ‘issue,” and ‘mistake’ to ensure commits
and issue reports are related to a defect; Step-3: We inspect
the files modified in each commit and issue report to ensure
commits and issue reports are related to Kubernetes config-

uration management; and Step-4: We exclude commits that
are duplicates of others. In all, we identify 66 commits and
1,941 issue reports that include defect-related keywords.

Step#3 - Detect Defects by Applying Qualitative Analysis:
We conduct qualitative analysis to identify defects from
defect-related commits and issue reports. The rationale is
that relying solely on keyword search can result in false pos-
itives. To identify defects, we use the IEEE definition [47]:
"an imperfection or deficiency in the code that needs to be
repaired.”

Criteria to Identify Defects - For defect identification, the
rater applies the following criteria: (i) problematic code
exists in the commit message or the issue report; (ii) prob-
lematic code leads to an incorrect or undesired consequence
that is explicitly expressed by a practitioner; (iii) the commit
message or issue content describes an immediate conse-
quence of the defect; and (iv) the problematic code was
repaired. By applying these criteria, we identify that 52 of
the 66 commits and 681 of the 1,941 issue reports to be
related with defects.

200

Repo. Count
100

I I I
0 20 40 60 80 100

Defect Count

Fig. 3: Distribution of defects.

Criteria to Identify Configuration Defects - The rater in-
spects if any of the following criterion is satisfied: (i) the
defect resides in a configuration script; (ii) the defect occurs
when provisioning Kubernetes resources, or managing Ku-
bernetes resources, or monitoring Kubernetes resources; and
(iii) the defect is related to a Kubernetes configuration. Us-
ing this criteria, we identify 719 defects. Of these 719 defects
52 and 667 are respectively, obtained from 52 commits and
681 issue reports. Figure [3| shows the distribution of defects
across 185 repositories. We observe 77.8% of the studied
repositories include =< 5 defects.

3.1.2 Derive Defect Categories

We employ a qualitative analysis method known as open
coding [81] to derive defect categories. Open coding in-
volves recognizing patterns in unstructured text to establish
categories [81]. The first and second author individually
applies open coding with 52 defects from 52 defect-related
commits and 667 defects from 667 defect-related issue re-
ports. While applying open coding, each rater applies or-
thogonality, i.e., derive the categories so that do not overlap.
Each rater examines messages and code changes for each
commit, as well as title, description, comment, pull request,
and code changes for each issue report.

Each rater creates a category with a short definition, which
we use to identify and resolve differences in labeling. Dis-
agreements occurred as the first and second author respec-

40
4

42

43
44
45
46
47
48

49

50
51
52
53
54
55
56
57
58

59

60
61
62
63
64
65
66
67
68
69

70

al

72
73
74
75
76
77
78
79
80
81

82

83
84

85

21
22
23
24
25
26
27
28

29

30

31
32
33
34
35
36
37
38
39
40
4
42
43

44

45

46

47

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 1: Filtering of OSS Repositories

Initial Repository Count 14,747,836
Criterion-1 (Available and relevant) 1410
Criterion-2 (>= 10% Configuration 1,087
scripts)

Criterion-3 (Not a copy) 1,079
Criterion-4 (Contributors >=10) 185
Final Repository Count 185

tively, identified 20 and 12 categories. Here, 11 categories
are identified by both raters, whereas 9 are identified by
the first author, and 1 is identified by the second author.
The Cohen’s Kappa [23] is 0.67, suggesting ‘substantial’
agreement [63]. Amongst the 10 disagreements, 3 occurred
because of naming issues, e.g., ‘conditional operator” and
‘conditionals,” and 7 occurred because of definition overlap,
e.g., ‘access control’ is a sub-category of ‘security.” The
two raters discussed these disagreements but could not
reach consensus on all cases. Therefore, the last author,
with extensive experience in qualitative coding and defect
classification, and who also is not involved in the initial
coding, served as adjudicator to resolve the remaining
disagreements. While resolving the disagreements, the last
author examined the names, definitions, and code snippets
for the defects of interest. Then, the last author mapped the
defect to a category that has already been finalized.

Our defect categories is derived using open coding [81]
where we merged sub-categories into categories. This merg-
ing process occurred because of similarities between derived
subcategories. For example, the subcategory ‘privileged
ports” captures defects where containers are configured to
bind to ports below 1024, while the subcategory ‘access
control” refers to defects that inadvertently grant exces-
sive permissions. Although these defects occur in different
configuration fields, they both represent security defects.
Hence, we merged them into the broader ‘security” cate-
gory, which unifies defects that compromise confidentiality,
integrity, or availability.

3.1.3 Scoping Review

We compare identified defect categories to those of previ-
ously studied software systems using a scoping review [9)].
A scoping review is a variant of a systematic literature re-
view conducted in a reduced scope [9]. Our review includes
publications related to defect categorization published at
the International Conference of Software Engineering (ICSE)
and Foundations of Software Engineering (FSE) conferences
from 2020 to 2024. We select ICSE and FSE due to their
reputation in publishing software engineering research. Ad-
ditionally, we include three defect categorization publica-
tions [21], [82], [95] and two Kubernetes-specific studies [53],
[77]. In all, we use 21 publications, of which 9,7, 1,1, 1, 1
and 1 are respectively, from ICSE, FSE, TSE, EMSE, ESEM,
TOSEM, and IWCMC.

3.2 Answer to RQ1

We answer RQ1 by reporting the defect categories and
results related to scoping review (Section [3.2.2), results re-

TABLE 2: Dataset Attributes

Category Data
Total Repositories 185
Total Commits 417,598
Total Developers 21,559
Kind Scripts 37,147
Helm Scripts 7,254
Total Kubernetes Scripts 44,401
Total Size (LOC) 51,282,124
Total Count of Issue Reports 140,872
Total Count of Stars 398,347
Time Span 06/2014 - 03/2024

lated to scoping review (Section [3.2.1)), their frequency (Sec-
tion [3.2.3).

3.2.1 Answer to RQ1: Defect Categories

We identify 15 defect categories, which we characterize with
examples obtained from our OSS repositories.

{{- 1f and .Values.certificates.autoGenerated (
not .Values.certificates.certManager.enabled) }}
{{- 1f or (and .Values.certificates.autoGenerated
(not .Values.certificates.certManager.enabled))
(.Values.permissions.operator.restrict.secret) }}
apiVersion: rbac.authorization.k8s.io/vl

e

Listing 3: Example of a conditional-related defect.

I Conditional: This kind of defect manifests when develop-
ers use incorrect operators or operands in conditional state-
ments, such as if-else blocks. Listing E] shows an example
defect [33]] where an improper operand, i.e., ‘and’ is used in
an if-else block. Due to this defect, the application fails to
startup.

II Container Provisioning: This defect category occurs
when developers provision containers for pods. There are
two sub-categories: (i) Command Line Arguments (CLA): This
defect category occurs due to specifying erroneous com-
mand line arguments. Arguments can be provided either
from command line or using the command or args prop-
erty. Listing {4 shows a CLA-related defect [67] where an
erroneous argument is provided for command. Due to this
defect, the image is unable to be recovered after being
deleted. (ii) Resources: This defect occurs because of pro-
visioning resources that are unspecified, under-specified,
or over-specified. Listing [5| shows a resources-related de-
fect [38] where resource limits are under-specified, i.e., 256
Mebibytes (Mi) is used instead of 550Mi. This defect causes
a hang.

III Custom Resource: This defect category occurs when
developers incorrectly manage custom resources (CRs) in
Kubernetes. CRs are extensions of the Kubernetes API that
allow developers to create and manage new kinds of re-
sources beyond what Kubernetes offers by default [59].
Listing @ shows an example defect [49] where an incorrect
image tag is configured for the ClusterServiceVersion
CR.

IV Data Fields:
This defect cate-
gory occurs when +
the data fields are Listing 7: A defect related to entity ref-
improperly han- erencing.

dled in scripts. We identify five sub-categories: (i) Base64
String and Encoding (BSE): This defect occurs due to the
misuse of Base64 encoding. Figure [da] shows a BSE-related

metadata:

labels:
control-plane:
control-plane:

controller-manager
argocd-operator

48

49

50

51

52

53
54
55
56
57

58

59
60
61
62
63
64
65
66
67
68
69
70
71
72

73

74
75
76
77
78
79
80

81

82
83
84
85
86
87
88

89

21
22
23
24
25

26

27

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

—-stringData: —{{- toYaml volumeMounts:
— username: "{{.vsphereUsername}}" — .Values.volumes.keda. - - name: data—{{
- password: "{{.vspherePassword}}" «— extraVolumeMounts | — .Release.Namespace
+data: node: {{ — 1}
+ S : {{.vsphereUsername | < S$sts.node }} -path: {{ . }} + - name: data-{{
&= +node: {{ —pathType: volumes.keda. — = e.Namespace |
+ ssword: {{.vspherePassword | — S$sts.node | < ImplementationSpecific umeMounts | — trunc 58
<> Dbé6denc}} < quote }} +pathType: Prefix < nindent 10 }} < trimSuffix "-" }}
a b c d e

Fig. 4: Examples of defects related to data fields. Figures @ and @ respectively, presents examples of defects

related to BSE, IDT, IUPT, syntax, and VR.

command:

= i.ionghornio/backing—image—manager:
— v2_20210820_patch2
+ - longhornio/backing-image-manager:v2_20221027

Listing 4: Example of a CLA-related defect.

resources:
limits:

= memory :

ar memory:

Listing 5: Example of a resource-related defect.

256Mi
550M1i

kind: ClusterServiceVersion

— name: OPERATOR_NAME
= image: quay.io/jaegertracing/
— Jaeger-operator:v1.29.0
1 image: quay.io/jaegertracing/
— Jaeger-operator:1.29.0

Listing 6: Example of a CR-related defect.

defect [10] because of not using Base64 encoding with
‘b6denc.’” (ii) Incorrect Data Types (IDT): This defect occurs be-
cause of using incorrect data types. Figure[db|shows an IDT-
related defect [29] that causes a hang. The defect occurred
because of missing quote, which causes annotations to
be interpreted as numbers instead of strings. (iii) Incorrect
URL Path Types (IUPT): This defect occurs due to misuse
of pathType, an attribute used to route incoming traffic
to the backend services. Figure {4c| shows an IUPT-related
defect [108] which results in a dashboard failing to load. (iv)
Syntax: This defect occurs due to syntax errors. Figure
shows a syntax-related defect [55] where incorrect inden-
tation is used. (v) Violation of Restrictions (VR): This defect
occurs due to the failure to adhere to the specific technical
rules and constraints enforced by Kubernetes on resource
definitions and configurations. These restrictions include,
but are not limited to, name length, allowed characters, and
the correct format of values. Figure [d€| shows a VR-related
defect [41] where a dynamically generated name exceeds the
maximum length of 63 characters.

V Entity Referencing: This defect category occurs when
Kubernetes entities, such as names and labels are incorrectly
referenced or entities that are referred to do not exist.
Listing [7] shows an example defect [8] where the incorrect
label ‘controller-manager” is provided instead of ‘argocd-
operator.”

containers:
— name:
image: docker.io/aquasec/trivy:0.34.0
image: "{{ .Values.trivy.repository }}:{{
— .Values.trivy.tag }}"

Listing 8: A defect related to incorrect Helming.

main

VI Incorrect Helming: This defect category occurs when

users hard-code configuration values in templates. Hard-
coding configuration values in templates is considered as an
anti-pattern in Kubernetes [17]. Listing |8|shows an example
defect [4], where the configuration value is hard-coded in a
template. Due to this defect, the user-provided image value
is never applied.

subjects:
namespace: {{ .Release.Namespace }}
+ namespace: {{ include
— "opentelemetry-collector.namespace" . }}

Listing 9: Example of a namespace-related defect.

VII Namespaces: This defect category occurs when an incor-
rect namespace is used. Namespaces provide a mechanism
for isolating groups of resources within a single Kubernetes
cluster by separating different environments [59]]. If re-
sources are placed in a namespace that is different from the
objects that use them, then the referencing objects will not be
able to access these resources, leading to application failures.
Listing [9 shows an example defect where the namespace is
incorrect due to an incorrect template directive. As a result,
the deployed application of interest results in a crash.

ClusterRole
argocd-server

= kind:
- name:

= kind:
- name:

ClusterRoleBinding
argocd-server

kustomization.yaml:
resources:
= — argocd-server-clusterrole.yaml
- — argocd-server—clusterrolebinding.yaml
./application-controller

Listing 10: A defect related to orphanism.

VIII Orphanism: This defect category occurs when either
resources in a pod are not properly de-allocated, or when
resources are deployed but not referenced by any other
resources. Listing shows an example defect [7] where
a ClusterRoleBinding object references a non-existent ser-
vice account, i.e., ‘argocd-server.” This defect leads to a
resource leak, as the orphaned ClusterRole and Clus-
terRoleBinding continue to consume cluster resources
unnecessarily.

IX Pod Scheduling: This defect

category occurs when develop- | 2ffinitv: ()

+ affinity:
ers incorrectly use pod scheduling * nodeAffinity:
mechanisms, such as affinity. Affin-
ity is a set of rules that assign pods Listing 11: A de-
to nodes based on certain criteria, fect related to pod
such as node labels or the location scheduling.

of other pods [59]. Listing [TT]shows an example defect [61]

28
29
30
31
32

33

34
35
36
37
38
39
40
#
42

43

44
45
46
47
48
49
50
51

52

53
54
55
56
57
58
59

60

20
21
22
23
24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

data:

Vi

- {{- if eqg (typeOf .Values.alertmanager.config) "string" }}
rules: + {{- if .Values.alertmanager.stringConfig }}
apiGroups: args: + alertmanager.yaml: {{ tpl (.Values.alertmanager.stringConfig) |
= — mym - —-cert-dir=/tmp < Dbé6denc | quote }}
= Ww - — ——secure-port=443 + {{- else if eq (typeOf .Values.alertmanager.config) "string" }} securityContext:
s = o= + alertmanager.yaml: {{ tpl (.Values.alertmanager.config) bédenc | — runAsNonRoot: true
— events.k8s.io «—» ——secure-port=4443 — quote }} + runAsUser: 65534
a b c d

Fig. 5: Examples of security defects. Figures and [5d|respectively, presents examples of defects related to AC, PP,

ESD, and SC.

where affinity is missing. This causes a pod to be unexpect-
edly scheduled on the ‘fargate” node, leading to resource
contention between pods.

X Probing: This defect category - tepSocket :
. .. 4F livenessProbe:
that occurs when probing is in- + httpGet :
+ path: /healthz

correctly handled in scripts. Ku-
bernetes provides two health
check probes namely, liveness
probes and readiness probes to monitor the health status
of the provisioned containers [59]. Listing shows an
example defect [6] where the configurations for a liveness
probe is missing. Due to this defect, the pod could not
automatically recover from an error status when a failure
occurred, leading to an outage.

Listing 12: Example of a
probing-related defect.

XI Property
Annotation: This apnnotations:
"cert-manager.io/inject-ca-from":

dEfeCt Category i: kserve/serging*certj

occurs when P
— cert-manager.io/inject-ca-from":

developers use — kubeflow/serving-cert

user-defined

annotations Listing 13: A defect related to prop-

incorrectly. erty annotation.

Annotations are used to attach arbitrary non-identifying
metadata to objects [59]. Unlike labels, which are used to
organize and select subsets of objects, annotations are not
used to identify and select objects. Instead, they are used to
store additional information that may be used by external
libraries. Listingshows an example defect [56] because of
incorrectly using the kserve/serving-cert annotation.

XII Security: This category includes defects that violate the
principle of confidentiality, integrity, or availability. The four
sub-categories are: (i) Access Control (AC): Access control
is defined as the technique that regulates who or what
can view or use resources in a computing environment.
If access control is improperly configured, it can lead to
creation of over-privileged and under-privileged entities.
Over-privileged entities, such as users or processes may per-
form unauthorized actions, access sensitive data, or disrupt
the operation of the system [31]]. Under-privileged entities
can lead to availability issues, such as not being able to
access needed cluster data. Figure |5a| shows an AC-related
defect [62] that occurred because of using “*' that allows
unauthorized users to gain access to sensitive data. (ii)
Privileged Ports (PP): This defect occurs due to the use of
a privileged port number. Using privileged ports that are
typically below 1024 requires higher privileges, which can
increase security risks, such as privilege escalation, if not

properly managed [5]. Privilege escalation can expose the
system to attacks, as they may require running applications
or containers with more access than necessary allowing a
malicious user to gain unauthorized control [74]. Figure
shows a PP-related defect [60] where a privileged port
number 433 is used. (iii) Exposure of Sensitive Data (ESD):
This defect occurs due to exposure of sensitive data in
scripts. Figure [5c| shows an ESD-related defect [73] where
a plain string can be mistakenly passed to the Secret
entity. (iv) Security Context (SC): This defect that occurs due
to privileged securityContext or a missing securi-
tyContext. A securityContext is a Kubernetes entity
that determines the user IDs, group IDs, and whether the
container runs as a privileged user. An improperly config-
ured securityContext can result in containers running
with unnecessary privileges, increasing the risk of privilege
escalation, unauthorized access, and potential compromise
of the system [66]]. Figure [5d|shows a SC-related defect [65]
where ’ runAsUser’ is missing for securityContext,
which causes the container running with root privileges.
Due to this defect, malicious users could gain unauthorized
access.

XII Unsatisfied Depen-

dency: This defect cate- accesstodes: ~

gory occurs when exe- + _:_{ { .Values.accessMode }}
cution of scripts are de-

pendent on one or mul-
tiple prerequisites, such
as network-related depen-
dencies and container im-
ages. Listing[14]shows an example defect [48] where scaling
up pods on different nodes fails due to the missing precon-
dition ReadWriteMany. The ReadWriteMany access mode
in the persistent volume claim configuration allows multiple
nodes to read and write simultaneously, which is a crucial
precondition for scaling up pods across different nodes.

values.yaml:

+ accessMode: ReadWriteMany

Listing 14: A defect related to
unsatisfied dependency.

XIV Version Incom-
patibility: This defect
category occurs when
developers use APIs
or Kubernetes objects
that are no longer sup-
ported by Kubernetes and its APIL Listing shows an
example defectﬂwhere a deprecated API version ‘exten-
sions/vlbetal’ is used. Due to this defect, the configu-

= apiVersion:

— extensions/vlbetal}

1 apiVersion: apps/vl
kind: Deployment

Listing 15: A defect related to ver-
sion incompatibility.

1. https:/ / github.com/SeldonlO/seldon-core/issues /3677

48
49

50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
7

72
73
74
75
76
77
78
79
80
8

82

83

84
85
86
87
88
89
90
91

92

21
22
23
24
25
26
27
28
29

30

32
33
34
35

36

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

vii

TABLE 3: A Comparison Between Identified Defect Categories and Defect Categories for Previously-Studied Software

Systems

Data
Fields

Container Custom
Provi- Re-
sioning source

Previously-studied Software
System

Entity
Refer- Helm-
encing ing

Conditio-
nal

Incorrect Namespa Orphanis

Pod Probing Property Security UnsatisfiedVersion Volume
Schedul- Annota- Depen- Incom- Mount-
ing tion dency patibil- ing

ity

Android Applications [98]

Autopilot Software [97]

NSNS
(RN NN
NN NN
(REREAN
(RN

ANERRRE

Deep Learning Compiler [88]

<

Deep Learning Deployment
(Mobile) [19]

Deep Learning Stack [44]

A

Federated Learning Systems [32]

IBM Proprietary Software [21]

TaC State [42]

TaC Defect [76]

Linux Kernel [95]

NASA Software Projects |82

PlofefsSprfefrfr]t

Machine Learning Model [40]

RERERANA RS AN

IoT [68]

Database Systems [26]

Web Server Systems [100]

Multilingual Python Projects |104]

WeChat [99]

Static Analyzers [43]

SLIKUBE [77]

RN AR R R ANANASANASANE
LSS SIS SIS SN

NEARRERERANK

SIS efefefefefrfeprfr]s e

Kubernetes Security
Deployments [53]

Lo e SIS NS ISIS S

lfe] o] fefepefffe]
NEARRASEREAREAS AR RN R R EEANAS
tpoeprpefepepepeprpepreprpepr]rpn

ANANEAREA AN

lfe] oo fefepefffe]
Spepefefefeefepefefefefe]efif

Faults in Deep Learning [45]

ration script fails to be executed and leads to a crash.

XV Volume Mounting: This
defect category occurs when _
developers incorrectly mount *
storage for applications that Listing 16: A defect related
are managed by Kubernetes. to volume mounting.
Listing shows an example defect E] where the ‘zk-data’
volume is incorrectly mounted instead of ‘zk-datalog.” This
defect resulted in a crash.

- mountPath: /datalog
name: zk-data
name: zk-datalog

3.2.2 Comparison with Defect Categories for Previously-
studied Software Systems

In Table[3|we report the defect categories that have appeared
for other software systems. In the table, a ‘v’ indicates
that the defect category is reported in previously-studied
software systems, while a ‘~" denotes that the category
is not reported. As highlighted in green, 7 are unique to
Kubernetes: custom resource, incorrect Helming, names-
paces, orphanism, pod scheduling, property annotation, and
volume mounting. While the previous section introduces
and defines each defect category, this comparison explains
why these seven categories are specific to Kubernetes and
absent from other software systems. In particular, these
categories focus solely on defects in YAML-based config-
uration files, which do not overlap with prior work on Ku-
bernetes operators and therefore are not renamed variants
of operator-based defects. Unlike, operators that are custom
controllers [59], configuration scripts are used to configure
built-in Kubernetes entities, such as pods, custom resources,
and namespaces. Custom resources in Kubernetes are used
to extend the Kubernetes API by allowing developers to de-
fine and manage their own custom resource types through
Custom Resource Definitions (CRDs). Incorrect Helming is
unique to Kubernetes as it stems from Helm-specific tem-
plate misuse, a defect type not applicable to other software
systems. Namespaces in Kubernetes are used to isolating
resources by providing logical separation within a cluster.

2. https:/ / github.com/apache/openwhisk-deploy-
kube/commit/720abadb5249eb96d5f27afd1cc21387ab85652d

Orphanism is unique to pods, where resources of pods,
such as CPU and memory are left unused or unlinked due
to improper cleanup or misconfiguration. Pod scheduling
is unique to Kubernetes pods, which is conducted when
the scheduler assigns pods to appropriate nodes based
on resource availability, constraints, and policies. Property
annotation is performed for Kubernetes resources to provide
metadata or configuration details, such as specifying labels,
or custom behaviors. Volume mounting is applicable for
Kubernetes pods, where the volume tag is used to define
the storage volumes and attach them to containers.

Our unique Kubernetes-specific categories, such as incor-
rect Helming and orphanism, are valuable because they
capture defects unique to YAML-based configurations that
prior publications have not addressed. The identified defect
categories provide a foundation for tool builders to design
targeted analysis techniques and for practitioners to more
effectively detect and fix Kubernetes configuration defects.

3.2.3 Results for RQ1: Frequency

We present the count of defects for each defect category in
Table [organized alphabetically by category names. The
most frequently occurring category is entity referencing. ‘-’
denotes categories without sub-categories. ‘Category Total’
represents the overall count of defects for categories with
sub-categories. The frequency distribution shows that cer-
tain categories are more frequent than others. For example
entity referencing and unsatisfied dependency are more
frequent than orphanism or property annotation. These
frequently occurring categories involve names, labels, and
references to other resources, which are essential for iden-
tifying objects and linking related resources, such as pods
to services. References that do not match expected names
or labels can break these connections, explaining the high
frequency of defects in entity referencing and unsatisfied
dependency. In contrast, orphanism arises only when re-
sources in a pod are not properly de-allocated or remain
unreferenced. Because orphaned resources typically impact
performance rather than core functionality, and a small
number of orphaned resources often has limited observable

37
38
39
40
1
42
43
44
45
46

47

48
49
50
51
52
53

54

55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75

20

21

22

23

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
TABLE 4: Answer to RQ1: Frequency of Defect Categories.

Category Sub-category Count
Conditional - 40
Container Provisioning Command Line Arguments 43
Resources 9
Category Total 52
Custom Resource - 46
Data Fields Base64 String and Encoding 2
Incorrect Data Types 19
Incorrect URL Path Types 1
Syntax 35
Violation of Restrictions 30
Category Total 87
Entity Referencing - 125
Incorrect Helming - 13
Namespaces - 15
Orphanism - 10
Pod Scheduling - 12
Probing - 22
Property Annotation - 12
Security Access Control 76
Exposure of Sensitive Data 4
Privileged Ports 1
Security Context 11
Category Total 92
Unsatisfied Dependency - 105
Version Incompatibility - 58
Volume Mounting - 30

impact, such defects are reported less frequently. Property
annotations are optional metadata and are configured less
frequently than names and labels, which leads to fewer
opportunities for defects to occur. Overall, this distribution
indicates that practitioners encounter difficulties with man-
aging inter-resource references, rather than with individual
resource definitions.

Answer to RQ1: We identify 15 defect categories, of
which 7 have not been reported for previously-studied
software systems: custom resource, incorrect Helming,
namespaces, orphanism, pod scheduling, property anno-
tation, and volume mounting. The most frequent category
is entity referencing.

4 RQ2: CONSEQUENCES AND FiX PATTERNS
We provide the methodology and results for RQ2 respec-

tively, in Sections [£.1]and

4.1 Methodology

In this section, we describe the methodology on how we
derive the consequences and fix patterns.

4.1.1 Deriving Consequences

We analyze commit messages and content in issue reports
for the identified 719 defects to determine the consequences
using open coding [81]. The first and last author conduct
open coding separately. Each rater applies the following
steps: (i) separate commits/issues labeled as defects iden-
tified from Section (ii) read text in commit messages
and issue report titles/body; (iii) separate text that expresses
consequences; and (iv) categorize consequences based on

viii

commonality, e.g., two issue reports E] express an outage-
related consequence.

Initially, the first and last author respectively, identify 17 and
12 consequences. The Cohen’s Kappa [23] is 0.53, suggesting
a ‘moderate’ agreement [63]. The disagreement results from
the last author’s opinion of finding 5 consequences that
are synonymous with consequences identified by the first
author. In order to resolve the disagreements, we use a rater
who is not the author on the paper for rater verification.
The voluntary rater uses his judgment to resolve the dis-
agreements. This rater is a third-year PhD student in the
department. Each identified defect category from Section[3.2]
maps to one of the 12 consequences.

4.1.2 Deriving Fix Patterns

We apply a qualitative analysis technique called open cod-
ing [81] similar to prior research [52], [115]. The first and
last author individually apply the following steps: (i) sep-
arate issues labeled as defects from Section that have
code changes; (ii) read the code that was changed for each
defect; (iii) identify commonalities in the changes and create
groups based on commonalities; and (iv) merge groups into
fix pattern categories. Each rater uses messages and code
changes from commits as well as from issue reports to apply
the above-mentioned steps.

Upon applying open coding, the first and last author respec-
tively, identify 12 and 8 fix pattern categories. The authors
disagree on 3 categories. Upon discussion, the 8 categories
identified by both raters and one category identified by
the first author that was not identified by the last author
were added. The Cohen’s Kappa [23] is 0.81, suggesting a
‘substantial” agreement [63].

4.2 Answer to RQ2

We provide answers to RQ2 in this section.

4.2.1 Answer to RQ2: Consequences

We identify 12 consequences, definitions of which are pro-
vided in Table |5\ A mapping between the identified defect
categories and the consequences is provided in Table [6]
We observe the most frequently occurring consequence to
be incorrect operations (InOp). We observe 52 defects to
be related to configuration inexecutability that does not
lead to crashes and hangs but keep the Kubernetes cluster
running with incorrect configurations. These consequences
show how serious Kubernetes configuration defects are and
highlight the importance of our empirical study.

4.2.2 Results for RQ2: Fix Patterns

We identify 9 fix patterns, definitions of which are provided
in Table |[7| A mapping between the identified defect cate-
gories and the fix patterns is provided in Table [§] The most
frequently occurring fix pattern to be configuration value
changes (CVC).

3. https:/ / github.com/argoproj/argo-cd/issues /10249,
https:/ /github.com/Azure/application-gateway-kubernetes-
ingress/issues/67

24

25

26
27
28
29
30
31
32
33

34

36

37

38
39
40
#
42
43
44
45
46

47

48
49
50
51
52
53

54

55

56

57

58
59
60
61
62
63
64
65
66

67

68

69
70
71
72

73

2

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 5: Results for RQ2: Consequences and their defini-
tions.

Definition

The consequence of obtaining warning
messages from the compilation engine.
The consequence of running the Ku-
bernetes cluster with incorrect config-
urations. In this case, configurations
specified in scripts are not executed or
are overridden.

The consequence of a Kubernetes op-
eration being terminated abruptly.
The consequence of not being able to
diagnose failures or crashes.

The consequence when unauthorized
users get access to data.

The consequence when an operation is
unresponsive.

The consequence of generating an arti-
fact incorrectly because of a defect.
The consequence when Kubernetes-
related operations are executed incor-
rectly.

The consequence of generating an
incorrect display for the Kubernetes
dashboard.

Consequence
Compiler Warning (CW)

Configuration
Inexecutability (CI)

Crash

Diagnose Inability (DI)

Exposure of Unautho-
rized Data (EUD)
Hang

Incorrect Artifact Gener-
ation (IAG)
Incorrect
(InOp)

Operations

Incorrect Rendering (IR)

Outage The consequence when a Kubernetes
object is unavailable when requested
by users.

Performance The consequence of incurring unex-
pected usage of CPU and memory.

Unpredictable The consequence of providing unpre-

Responses (UR) dictable responses to the user, such
as conducting unpredictable routing
of traffic and obtaining unpredictable

responses from pods.

Answer to RQ2: We identify 12 consequences, with
incorrect operations being the most common. We observe
52 defects mapped to configuration inexecutability, where
clusters continue running with incorrect configurations
but without crashing. We also identify 9 fix patterns, with
configuration value changes being the most frequent.

5 RQ3: EVALUATION OF STATIC ANALYSIS TOOLS
FOR DETECTING DEFECTS

We organize this section by answering two sub-questions:

» RQ3.a: What categories of Kubernetes-related defects are
supported by static analysis tools?

o RQ3.b: How can we detect defects that are not supported
by existing static analysis tools?

We evaluate static analysis tools in our paper. We do not
evaluate dynamic analysis tools, such as ‘Kube-hunter’ E]
and ’BotKube’E]as these tools rely on logs that are generated
from a Kubernetes cluster at runtime. Therefore, evaluation
of these dynamic analysis tools require execution of con-
figuration scripts, which in turn is dependent on correct
inference of computing environments [[69]. Setting up these
environments correctly require adequate installation of all

4. https:/ / github.com/aquasecurity / kube-hunter
5. https:/ /botkube.io/

ix

artifacts specified as dependencies for each of the 185 reposi-
tories, which makes the evaluation of dynamic analysis tools
unfeasible.

In order to conduct evaluation, we use the curated dataset
described in Section 3.1} This dataset is informed by: (i) real-
worlds defects confirmed by practitioners; and (ii) manual
verification by the raters. An alert reported by a tool that
does not exist in the dataset is a false positive. Any defect
included in the dataset but missed by the tool is a false
negative. Our approach is consistent with prior research [64]
that conducted tool evaluation using curated datasets.

5.1 RQa3.a: Defect Categories Supported by Static Anal-
ysis Tools

5.1.1 Methodology

We use the following steps to answer RQ3.a:

5.1.1.1 Selection of Static Analysis Tools: We start the se-
lection process using the Google search engine in incog-
nito mode with the search string ‘defect detection tools
for kubernetes.” From the collected top 100 search results,
we identify 100 tools for Kubernetes. Next, we apply the
following criteria: Criterion-1: The tool must be publicly
available for use. Criterion-2: The tool must be able to detect
defects using static analysis. The first author of the paper
read the documentation of each tool to determine if the
tool can detect defects in configuration scripts. Criterion-3:
The tool must support execution through the command line
interface, allowing for automated execution. Criterion-4: The
tool must be capable of detecting at least one of the 15 identi-
fied defect categories. This ensures that each tool contributes
to the overall coverage of defect detection. The first author
reads the documentation of each tool to apply this criterion.
By applying Criterion-1, 2, and 3, we respectively, identify
23, 20, and 8 tools. From our application of the four criteria
we identify eight tools. Attributes of these tools are available
in Table [9] Each of the 8 tools was applied on 2,260 scripts
using the command line. For example, ‘Kubeconform” was
executed using ‘kubeconform < file_path >.” The process
took 9.75 hours in total, averaging 1.2 hours per tool.

As this tool selection process is subjective, we allocate an-
other rater during the revision of the paper. The other rater
is the last author of the paper who apply the same steps as
the second author where they read the documentation and
source code of each tool. Upon completion of the process,
we observe a Cohen’s Kappa [23] of 1.0 indicating ‘Perfect’
agreement [63].

5.1.1.2 Evaluation of Static Analysis Tools: We use two eval-
uation activities:

Activity-1: Evaluation based on support: For this evalua-
tion, we conduct a mapping between each identified defect
category to a detection rule used by each of the eight tools.
The first and second authors independently apply closed
coding [81]], where they read the documentation and source
code of each tool to perform this mapping. A mapping exists
if a rule matches the definition of a defect category. Upon
completion of the closed coding process, the Cohen’s Kappa
is 0.95 [23], indicating an ‘almost perfect’ agreement [63].
Disagreements arose for 10 rules because one of the raters

20
21
22
23
24
25
26

27

28

29

30

31
32
33
34
35
36
37
38
39
40
#
42
43
44
45
46
47
48
49
50
59
52
53

54

55
56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
7
72

73

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 6: Answer to RQ2: Frequency of consequences. " means zero defects map to that consequence.

Defect Category | cw CI Crash DI EUD Hang IAG InOp IR Outage Performance UR
Conditional - 9 13 - - 1 9 1 - 6 - 1
Container Provisioning - 7 4 1 - 2 1 8 - 24 4 1
Custom Resource - 3 13 6 - 1 2 6 - 13 2 -
Data Fields 1 3 57 - - 3 - 6 - 15 2 -
Entity Referencing - 19 34 5 - 1 2 25 2 26 7 4
Incorrect Helming - 8 1 - - - - - - 3 - 1
Namespaces - - 1 - - - - 11 - 3 - -
Orphanism - - 1 - - - 2 - - 7 -
Pod Scheduling - 1 1 - - - - 3 - 4 3 -
Probing - 1 3 - - - - - - 12 2 4
Property Annotation - - 2 2 - 1 - 3 - 3 1 -
Security 1 - 2 4 9 1 - 63 - 12 - -
Unsatisfied Dependency - 1 6 7 - 6 - 46 - 29 7 3
Version Incompatibility 7 - 17 2 - 1 1 13 - 15 - 2
Volume Mounting 1 - 6 2 - 1 - 7 - 13 - -
Total | 10 52 161 29 9 18 15 194 2 178 35 16

TABLE 7: Answer to RQ2: Fix patterns, their definitions, and examples.

Fix Pattern Definition Example Code Snippet
Adding Conditional | Adding missing or incorrect conditional state- | - {{- if .Values.extraVolumeTags }}
Statements (ACS) Hmnmintmnpbhﬂ. + {{- i1f or .Values.controller.extraVolumeTags
— .Values.extraVolumeTags }}
Configuration Value | Changing configuration values to correct or up- | ports:
Changes (CVCQ) dated values. -~ port: 443
+ — port: 8443
Directive Fix (DF) Fixing a template directive to correctly populate | - value: {{ .Values.checkReaper.maxPodsThreshold
configuration. = }}
+ value: {{ .Values.checkReaper.maxPodsThreshold
— | toString }}
Environment Variable | Changing environment variables used at con- | env:
Fix (EVF) tainer runtime. — — name: CONSUL_HTTP_TOKEN
+ — name: CONSUL_ACL_TOKEN
Object Modification | Adding or deleting Kubernetes objects. + apiVersion: rbac.authorization.k8s.io/v1l
(OM) + kind: ClusterRoleBinding
Property Modification | Adding or deleting properties of a Kubernetes | readinessProbe:
(PM) object. + httpGet:
+ path: /healthz
+ port: 8082
- tcpSocket:
- port: 8082
Relocation Relocating objects, paths, or properties to correct | - mountPath: /usr/bin
pkmes + mountPath: /usr/local/mount—-from-host/bin
Rule Fix (RF) Fixing rules for access control policies. rules:
- resources: ["replicasets"]
+ resources: ["replicasets", "daemonsets",
— "deployments", "statefulsets"]
Syntax Fix (SF) Correcting YAML syntax errors. labels:
— cluster.x-k8s.io/aggregate-to-manager: true
+ cluster.x-k8s.io/aggregate-to-manager: "true"

was less familiar with specific Kubernetes configuration
concepts. For example, a rule for unsafe sysctls should
have been mapped to the ‘security’ category, but because
of lack of familiarity it was not mapped by the rater. All
disagreements are discussed and resolved collaboratively.

Activity-2: Evaluation based on detection accuracy: Using
precision and recall, we compute the detection accuracy
of the generated alerts, i.e., the detection results obtained
from each tool. Precision is calculated as % Recall is
calculated as TP&% Here, TP corresponds to the number
of alerts that are true positives, i.e., actual defects, F'P
corresponds to the number of false positive alerts, and FN
corresponds to the number of missed actual defects. We
determine an alert to be a T'P if the alert correctly identifies a
defect for the same category, same configuration script, same
location, and same coding pattern for the defect of interest.
We determine an alert to be a F'P if the alert incorrectly
identifies a defect belonging to an incorrect category, or
incorrect script, or incorrect location, or for the incorrect

coding pattern. We determine F'N for a defect, if a tool does
not report an alert for it. In order to determine T'P, F'P,
and F'N we use the dataset that we construct for answering
RQ1. We do not include any defects that is not present in
our dataset used for categorization. We repeat the process
for calculating TP, F'P, and F'N for all defect categories.

Activity-3: Investigating Tools” Capabilities Beyond Our
Defect Taxonomy: While the studied tools may not accu-
rately detect our identified categories, they can still be useful
for detecting coding patterns related to the validation of
configuration scripts. We investigate this aspect as part of
this activity using the following steps:

1) First, we apply the tools on a set of 2,260 configuration
scripts and identify the categories of coding patterns that
can be helpful for validation of scripts but not included
in our taxonomy. Here, we examine the rules from each
tool to determine whether they match the definitions of
our taxonomy categories. Rules that do not match are

20
21
22
23
24

25

26
27
28
29
30

31

32
33
34
35
36

37

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Xi

TABLE 8: Answer to RQ2: Frequency of fix patterns. - means no defects map to the fix pattern.

Defect Category | ACS Ccvc DF EVF oM PM Relocation RF SF
Conditional 13 - 27 - - - - - -
Container Provisioning 1 32 3 9 1 4 1 1 -
Custom Resource 3 9 3 - 2 29 - - -
Data Fields 4 8 23 1 4 12 1 - 34
Entity Referencing 10 58 41 2 - 7 4 3 -
Incorrect Helming - - 9 1 - 3 - - -
Namespaces - 2 3 1 1 6 - 2 -
Orphanism - 3 1 - 5 - 1 -
Pod Scheduling 2 - 1 - - 9 - - -
Probing 1 6 - - - 15 - -
Property Annotation 2 6 1 - - 3 - - -
Security 1 4 3 - 2 11 - 71 -
Unsatisfied Dependency 11 11 2 5 16 25 2 33 -
Version Incompatibility 14 32 5 - 1 4 2 - -
Volume Mounting 4 3 1 - - 20 2 - -
Total | 66 174 123 19 32 148 12 111 34

TABLE 9: Descriptions and Attributes of Selected Static Analysis Tools

Tool Description Source Output Format Size(LOC) Technique

Checkov A tool that can scan configurations used in cloud GitHub [18] SARIF, Text, JSON, 695,709 Policy-as-code
infrastructure. It supports over 1,000 checks related XML, CSV, [14]
to security and compliance. Markdown

Datree A tool designed to secure Kubernetes workloads. GitHub [28] SARIF, JSON, 31,193 Rule-based
It focuses on workload security, resource manage- XML, Text analysis [101]
ment, and best practices.

Kube-Score A tool designed to analyze Kubernetes object def- GitHub [109] SARIF, JSON, 17,054 Rule-based
initions. It investigates Kubernetes resources and JUnit, Text, CI analysis [101]
provides recommendations to enhance the resilience
of applications.

KubeLinter A tool developed that identifies security defects and GitHub [92] SARIF, JSON, Text 24,295 Rule-based
deviations from recommended practices. KubeLin- analysis [101]
ter is perceived as the most popular static security
analysis tool.

Kubesec A security-focused static analysis tool that identi- GitHub [24] JSON, YAML, Text 9,919 Rule-based
fies potential security weaknesses in configuration analysis [101]
scripts. It assigns a security score to Kubernetes
resources based on their configuration.

Kube-conform A tool that validates scripts with OpenAPI and GitHub [106] JSON, XML, Text, 639,910 Schema
JSON schemas, ensuring they comply with expected TAP validation [30]
standards.

SLI-KUBE A tool developed by researchers that identifies 11 | TOSEM'23 [77] SARIF, CSV 10,987 Rule-based
categories of security weaknesses in scripts. It can analysis [101]
be executed from the command line and is available
as a Docker image.

Yamlint A tool that checks for syntax validity and adherence GitHub [1] Text 11,535 Pattern-based
to best practices, including key repetition and syntax Analysis [34]
issues, such as trailing spaces.

classified into new categories that are not included in
our taxonomy. The classification process is performed
independently by the first and last author using closed
coding [81]], where both raters read the documentation
and source code of the tools to understand the intent of
each unmapped rule. A rule is classified into a category
if the rule matches the definition of one of the categories
that have not been included in our taxonomy. Upon
completion, the Cohen’s Kappa is 0.91 [23], indicating an
‘almost perfect” agreement [63]. The two raters disagree
on 10 classifications, which are resolved by consensus.

2) Second, we run the eight tools on a random sample of
329 configuration scripts, a sample size that corresponds
to a 95% confidence level. We selected the 95% con-
fidence level because it is a commonly-used standard
in empirical software engineering and statistical analy-
sis [86], [114]. Finally, we count the frequency of alerts
generated by the unmapped rules and report the number

of detected defects in each category that have not been
included in our taxonomy across the eight tools.

5.1.2 Results for RQ3.a

Our results are:

5121 Results Related to Support: We find eight defect
categories to be supported by at least one tool. The defect
categories for which we observe no support are: conditional,
CR, incorrect Helming, orphanism, property annotation, un-
satisfied dependency, and volume mounting. A full break-
down is available in Table |10} which is organized alphabeti-
cally by category names. In the table, a ‘v indicates that the
tool can detect the category, while a - denotes that the tool
cannot detect the category.

5.1.2.2 Results related to Detection Accuracy: We observe
the average precision and recall to be < 0.28 for all eight
tools. The highest precision is observed for Datree and
Kubesec respectively, for syntax and incorrect data types
(IDT), which are sub-categories of data fields. The highest

20

21

22
23
24
25
2
27
28
29
30
31
32
33
34
35

36

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Xii

TABLE 10: Answer to RQ3.a: Support for Detecting Defects in Kubernetes Configuration Management.

Kube- Kube- Kube- SLI- Yaml-
Category Sub-category Checkov Datree conform Linter Score Kubesec KUBE lint
Conditional N/A - - - - - - Z -
Container Provisioning CLA - - - - - B B Z
Resources - Vs v _
Custom Resource N/A - - Z - z
Data Fields BSE - - - - - C Z Z
IDT - v v - - v -
IUPT - - - - - - - -
Syntax - - - - - - - v
VR - v v v v v -
Entity Referencing N/A v v - v 4 v -
Incorrect Helming N/A - - - - - z -
Namespaces N/A v v v - - v -
Orphanism N/A - - - - - - _ _
Pod Scheduling N/A - v - v v - - -
Probing N/A 4 v/ - v/ v/ - - -
Property Annotation N/A - - - N - B
Security AC v v - v - 7 Z Z
ESD v v - v - - v/ -
PP - - - - - - - -
SC v v - v v v v -
Unsatisfied Dependency N/A - - - - - _ Z
Version Incompatibility N/A - v - v v/ - Z _
Volume Mounting N/A - - - - - Z

recall is observed for Yamllint in the case of detecting
defects-related to syntax. The worst performing tool is SLI-
KUBE as its precision and recall are 0.0 for all categories.
Data related to all tools and defect categories are available
in Table [11] The ‘# column represents the count of defects

for each Cateiﬁory and sub—cate‘%ory. .
5.1.2.3 Restults’Related to Tools” Capabilities Beyond Our

Defect Taxonomy: We identify 6 categories of coding pat-
terns that are related to validation identified by the stud-
ied tools but not included in our taxonomy: violations of
best practice, built-in features, control plane configuration,
broken isolation, missing availability safeguards, and tool
setup. The results are summarized in Table The ‘#
column reports the count of alerts that we classified into
each category. A ‘- indicates that the tool does not contain
rules for that category.

The most frequent category that has not been included
in our taxonomy is violations of best practice. The high
frequency of alerts arises because of certain tools” emphasis
on detecting violations of best practice. One such example
is Checkov. For example, Checkov includes rule CKv2_-
K85_6, ‘minimize the admission of pods which lack an
associated NetworkPolicy,” which represents a hardening
recommendation rather than a configuration defect directly
observed in our dataset. Missing availability safeguards and
broken isolation are the next most frequent categories, with
alerts reported by KubeScore, Checkov, and KubeLinter.
Kubeconform and Yamllint do not provide rules that map
to any categories that have been included in our taxonomy.
In contrast, Checkov and Datree together provide coverage
for every category not included in our taxonomy. This high-
lights that while some tools specialize in schema or syntax
validation, others emphasize on best practice enforcement.
Overall, these results show while the tools may not detect
all defects in our dataset accurately, they can be for practi-
tioners with respect to detecting violations of best practice,
detecting missing safeguards for availability, and isolation
issues that are important for Kubernetes deployments.

Answer to RQ3.a: 8 categories are supported by at least
one tool, while 7 have no support: conditional, custom
resource, incorrect Helming, orphanism, property anno-
tation, unsatisfied dependency, and volume mounting.
Average precision and recall are < 0.28 across all tools.

5.2 RQ3.b: Defect Detection with ConShifu

We provide the methodology and results for RQ3.b respec-
tively, in Sections and

5.2.1 Methodology

Answers to RQ3.a show that there are seven categories of
defects that are not covered by any tool. Of these seven
categories, incorrect Helming and orphanism can be de-
tected using static analysis. Detection of these two categories
of defects is important as these defects can cause crashes
and outages, as shown in Table [} We hypothesize that by
leveraging coding patterns from existing defects related to
these two categories, we can develop a linter for defect
detection. Accordingly, we construct ‘ConShifu’ ﬁ using the
following steps:

Step#1 - Parsing: ConShifu takes one or multiple config-
uration scripts as input. Each script is parsed into key-
value pairs where the hierarchies of keys are preserved.
ConShifu is capable of analyzing Kind and Helm scripts.
Upon completion of parsing, ConShifu stores the output in
the forms of key-value pairs in JSON files.

Step#2 - Rule Matching: After parsing is complete,
ConShifu applies rule matching to identify defects
similar to existing static analysis tools [79]. The rules
are listed in Table String patterns needed to
implement ‘isKind” is shown in the ‘String Pattern’
column. For rule derivation, we identify commonalities
amongst coding patterns that map to existing defects
reported in Section For example, the coding patterns

6. ‘Shifu’ (Jf#) is a Chinese word, which means ‘master’

39

40

41

42

43

44
45
46
47
48
49
50
51
52

53

54
55
56
57
58

59

60
61
62
63
64
65
66

67

21

22

23

24

25

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 11: Detection accuracy of eight tools. - means a precision (P) or recall (R) of 0.0.

Xiii

Category Sub- # Checkov Datree Kube- KubeLinter Kube- Kubesec SLIKUBE Yamllint
category conform Score
P R P R P R P R P R P R P R P R
Container Provisioning Resources 9 0.01 011 - - - - 0.01 012 0.002 0.05 002 027 - - - -
Data Fields IDT 19 - - 0.02 003 067 0.03 - - - - 1.00 003 - - - -
Syntax 35 - - 1.00 0.01 - - - - - - - - - - 0.001 0.50
VR 30 - - 024 009 024 0.07 - - 024 007 028 007 - - - -
Entity Referencing N/A 125 0.002 0.003 - - - - 001 001 003 001 001 001 - - - -
Namespaces N/A 15 | 001 0.14 - - - - - - - - - - - - - -
Probing N/A 22 [006 020 0.03 0.06 - - - - 0.06 0.16 - - - - - -
Security AC 76 | 0.02 0.02 - - - - - - - - - - - - - -
ESD 4 | 0002 0.17 - - - - - - - - - - - - - -
SC 11 | 0.01 0.20 - - - - - - 001 013 0.02 039 - - - -
Version Incompatibility N/A 58 - - - - - - 0.04 002 0.08 0.01 - - - - - -
Avg. 404 001 001 0.02 001 028 0.004 001 001 0.02 001 002 001 - - 0.001 0.001
TABLE 12: Classification of unmapped rules and their counts across 8 tools.
Category Definition # CheckovDatree Kube- Kube- Kube- Kube- SLI- Yaml-
conformLinter Score Sec KUBE lint
violations This defect category occurs when coding patterns in configuration scripts | 948 | 439 15 - 106 160 171 57 -
of Best | violate coding-related best practices, such as not specifying image tags,
Practice or missing labels or annotations for resource organization.
Built-in This defect category occurs when manifests deploy or fail to disable 2 2 - - - - - - -
Features risky built-in components and legacy features, such as the Kubernetes
Dashboard, Helm v2 Tiller, or insecure NGINX Ingress snippets.
Control This defect category occurs when Kubernetes control plane or kubelet 0 0 - - - - - - -
Plane Con- | settings are misconfigured through flags, admission plugins, or certifi-
figuration cate parameters, such as anonymous-auth enabled, missing TLS certs, or
disabled RBAC admission plugins.
Broken This defect category occurs when Kubernetes resources are configured | 32 20 0 - 9 - 0 3 -
Isolation to break isolation boundaries by sharing host namespaces or binding
sensitive host interfaces such as hostPID, hostIPC, or hostNetwork.
Missing This defect category occurs when workloads are deployed without safe- | 50 - 0 - 0 45 - 5 -
Availabil- guards that improve availability. Safeguards include, for example, replica
ity Safe- | requirements, PodDisruptionBudgets, cronjob deadlines, or topology
guards spread constraints.
Tool Setup | This defect category occurs when configuration scripts violate require- 0 - 0 - - - - - -
ments imposed by higher-level Kubernetes management tools, such as
GitOps platforms, CI/CD controllers, and operators. These tools extend
Kubernetes with their own conventions for labels, namespaces, and
resource configurations.
Total 1,032 461 15 - 115 205 171 65 -
mountPath: /var/lib/kubelet and mountPath: gust 01, 2024. We apply ConShifu on these 124 repositories

/var/lib/kubelet/plugins/ebs.csi.aws.com
appear for two instances of incorrect Helming where a
hard-coded value is used for a key called ‘mountPath.’
The commonality here is both coding patterns having a
hard-coded value for a key that is used in a template.
Thus, we can abstract these coding patterns into a rule
‘isTemplate(x) A 3((x.key) AisHardCoded(z.key.value)).” We
repeat the same process for orphanism.

ConShifu is a static analysis tool that we execute using
the command line for 2,260 scripts in 0.76 hours. Using
ConShifu we identify 381 instances of defects. From these
identified defects, we evaluate a random sample of 192
instances. On this sample, we obtain an average precision
and recall of respectively, 0.83 and 0.92. The precision and
recall of ConShifu for incorrect Helming is respectively, 0.85
and 0.96. The precision and recall of ConShifu for orphanism
is respectively, 0.81 and 0.89. These results are obtained at
a 95% confidence level, providing us the confidence that
the detected instances of incorrect Helming and orphanism
could be of relevance to practitioners.

Step#3 - Evaluation Using Practitioner Feedback: We sub-
mit issue reports to obtain feedback on the detected defects
by ConShifu. We start with 185 repositories and exclude
archived ones, resulting in 124 active repositories as of Au-

to detect defects and submit issue reports for developer
feedback. ConShifu analyzes 8,576 scripts in 22 minutes and
respectively, identifies 183 and 198 instances of incorrect
Helming and orphanism. We take a random sample and
submit 24 issue reports for 26 instances of incorrect Helming
and 18 instances of orphanism. We take a random sample
to comply with ethical recommendations by not spamming
the practitioners [36]. Each issue report includes the defect’s
location, a brief description, the potential consequences, and
a fix that is submitted as a GitHub pull request. The 24 sub-
mitted issue reports correspond to 21 distinct repositories.
Table [14] lists the repositories for which we submit issue
reports with URLs to the issue reports.

5.2.2 Results for RQ3.b

As of Jan 20 2025, we obtain 33 responses for 44 defects.
Practitioners have confirmed 26 defects as valid. As shown
in Figure@ of the 26 valid defects, 21 are related to incorrect
Helming and 5 are related to orphanism. Four defects of
orphanism detected by ConShifu are rejected as they re-
side in an application where the configuration values are
expected to be provided by users. Evidence of submitted
defect reports are available online [112].

26
27
28
29
30
31
32
33
34
35
36
37
38

39

40

41
42
43
44
45
46
47

48

2

3

4

5

6

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Xiv

TABLE 13: Rules Used by ConShifu

Category Rule

String Pattern

Incorrect Helming

isTemplate(x) A 3((x.key) A
isHardCoded(z.key.value))

N/A

Orphanism

(isKind(x) A —isReferenced(z.key.value)) V
(isKind(x) A —isReferenceExist(z.key.value))

‘ServiceAccount,” ‘ClusterRole,” ‘StorageClass,”
‘PersistentVolumeClaim,” ‘PersistentVolume,” ‘Role’

Answer to RQ3.b: We submit 44 defect reports and
receive 33 responses, of which 26 are confirmed valid by
practitioners. Among these, 21 relate to incorrect Helming
and 5 to orphanism. The agreement rate is 79% for the
acknowledged defect reports.

TABLE 14: Issue reports per repository.

Repository Count [Issue(s)

kedacore/charts 1 [1]

aquasecurity / trivy-operator [1]

clastix/kamaji [1]

k8gb-io/k8gb [1]

kubernetes-sigs /aws-ebs-csi-driver [1]

zalando/postgres-operator [1].12]
carina-io/carina
mspnp/microservices-reference-implementation
apache/openwhisk-deploy-kube
apache/dubbo-admin

(1]

[1]

e
[arjer

[1]

aws/amazon-vpc-cni-k8s

kube-logging /logging-operator [1]

kube-green/kube-green [1]

[1]

aws/eks-charts

senthilrch /kube-fledged [1]

kubeshark /kubeshark [1]

[1]

clusternet/clusternet

kadalu/kadalu 1]

[1]

mongodb/mongodb-enterprise-kubernetes

[1]

kubernetes-sigs/prometheus-adapter

o i e)) e e e B e e B S e S S e e B

[1]

kserve/kserve

6 DiscussiON

We discuss our findings as follows:

6.1 Significance of Our Empirical Study

The significance of our work can be summarized as follows:

o Our findings fundamentally advance the science of con-
tainer orchestration by providing the first systematic in-
vestigation of defects in Kubernetes configuration scripts.
Despite Kubernetes being the most popular tool to imple-
ment the practice of container orchestration [12], configu-
ration defects has remained an under-explored area. Our
taxonomy and empirical findings fill this gap, establishing
a foundation for future research in configuration quality
assurance and automated repair;

» The taxonomy of configuration defects contributes to the
knowledge of software defect literature. Prior work [76]
has demonstrated that defect taxonomies are valuable for
validation and verification efforts. Our taxonomy reveals
categories specific to container orchestration, such as or-
phanism, pod scheduling, and incorrect Helming, which
have not been documented in previous defect studies.

These categories enable targeted improvements in qual-
ity assurance for container orchestration. Understanding
which defects occur frequently and their consequences
helps prioritize detection and prevention efforts;

o The dataset presented in this paper can be used for tool
evaluation. Our evaluation of eight static analysis tools
reveals which defect categories are currently supported
and which categories lack tool support. These insights
can be used to further improve tools to detect defects for
container orchestration;

o Automated program repair for container orchestration
is an under-explored area with a lot of potential. Our
dataset of fix patterns makes a foundational contribution
to this area. The documented patterns show how prac-
titioners resolve different types of configuration defects.
This dataset can be used to evaluate existing program
repair techniques for configuration defects and develop
new techniques for configuration repair; and

« We have developed a new tool called ConShifu that iden-
tifies defects that have been confirmed by open source
contributors. This shows that the identified defect cate-
gories and our tool has relevance for practitioners.

We further discuss the implications and limitations respec-

tively, in Sections[6.2]and

6.2

The implications of our findings are:

Implications of Our Findings

6.2.1 Prioritizing Validation Efforts Based on Defect
Frequency

Our analysis of defect frequency highlights three implica-
tions:

1) practitioners should prioritize validation efforts for high-
frequency categories, such as entity referencing and un-
satisfied dependency, since these fields are foundational
for Kubernetes manifests and account for the majority of
observed defects;

2) tool builders should ensure that analyzers provide ade-
quate coverage for categories, such as entity referencing
and unsatisfied dependency; and

3) although categories, such as orphanism and property
annotation are less frequent, they still require mitigation
as they can lead to serious consequences, such as crashes
and outages.

6.2.2 ‘Shift Left’ Approach Towards Defect Detection

In software development, the ‘shift left’ approach advocates
for pro-active integration of quality assurance activities,

22

23

24

25

26
27
28
29
30

31

32
33
34
35
36
37
38

39

40
41
42

43

44

45

46

47

48

49

50

51

52
53
54
55
56

57
58

59

60
61
62

63

64

65

66

https://github.com/kedacore/charts/issues/648
https://github.com/aquasecurity/trivy-operator/issues/2208
https://github.com/clastix/kamaji/issues/505
https://github.com/k8gb-io/k8gb/issues/1676
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/issues/2101
https://github.com/zalando/postgres-operator/issues/2707
https://github.com/zalando/postgres-operator/issues/2752
https://github.com/carina-io/carina/issues/208
https://github.com/carina-io/carina/issues/210
https://github.com/mspnp/microservices-reference-implementation/issues/243
https://github.com/apache/openwhisk-deploy-kube/issues/784
https://github.com/apache/openwhisk-deploy-kube/issues/782
https://github.com/apache/dubbo-admin/issues/1282
https://github.com/aws/amazon-vpc-cni-k8s/issues/3009
https://github.com/kube-logging/logging-operator/issues/1791
https://github.com/kube-green/kube-green/issues/460
https://github.com/aws/eks-charts/issues/1147
https://github.com/senthilrch/kube-fledged/issues/234
https://github.com/kubeshark/kubeshark/issues/1601
https://github.com/clusternet/clusternet/issues/814
https://github.com/kadalu/kadalu/issues/1075
https://github.com/mongodb/mongodb-enterprise-kubernetes/pull/294
https://github.com/kubernetes-sigs/prometheus-adapter/issues/675
https://github.com/kserve/kserve/issues/3929

22

23

24

25

26

27

28
29
30
31
32
33
34
35
36
37

38

39
40
4
42
43
44
45
46
47
48

49

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Xv

20

Count
— DN QO

[evlenlenlenlan}
=

Incorrect Helming Orphanism

such as application of static analysis tools in the software
development process [72]. We advocate for a ‘shift left’
approach for configuration management of Kubernetes as
well. From our analysis, we observe 533 of the 719 defects
result in a crash or an incorrect operation or outage. This
finding shows defects in Kubernetes configuration scripts to
be consequential, and therefore the community should take
actions on how to facilitate defect detection for Kubernetes
configuration scripts. Our findings and the dataset could
be helpful in this regard as it could help the community
understand the nature of defects. While static analysis tools
suffer from low actionability due to false positives [80], these
tools still provide value for practitioners [3]], and therefore
could be useful for detecting configuration defects.

Despite their limitations, practitioners can still benefit from
using these tools, as they detect coding patterns that can
aid in validation efforts. Moreover, prior work shows that
practitioners still find static analysis tools valuable even
when they produce false positives, since detecting critical
defects is perceived to be better than missing them [3]. Our
evaluation shows certain alerts correspond to violations of
best practice, availability safeguards, and resource isolation
issues. Therefore, despite low precision in our evaluation,
these tools remain useful in practice for validating configu-
ration scripts used in Kubernetes.

6.2.3 The Need for Enhancing Static Analysis Tools for
Kubernetes

According to our analysis, none of the studied tools have
support for 7 of the 15 categories. We also observe the
second most frequently occurring defect category is un-
satisfied dependency for which none of the eight studied
tools provide any support. With a precision value of 0.28,
Kubeconform has the highest average precision amongst
all 8 tools. This is lower than what practitioners perceive
‘acceptable,” i.e., a precision <= 0.90 [80]. Furthermore,
while 5 of the 8 studied tools support the most frequently
occurring category of entity referencing, the precision and
recall is < 0.03 for each tool.

The above-mentioned evidence highlights the need of en-
hancing static analysis tools for Kubernetes with respect to
support and increasing detection accuracy. We provide three
recommendations. First, detection rules used by existing
tools need to be improved. Our curated dataset of defects
can be used for improving the rules. Second, practitioner
feedback can be collected to improve the detection accuracy
of static analysis tools. These tools should allow for seamless
integration into existing developer workspace in order to
collect feedback for the detected defects. Prior research also
advocated for obtaining practitioner feedback to improve

I Submitted
Accepted

I Fixed

I Rejected
NoResponse

Total
Fig. 6: Count of submitted, accepted, and fixed defects identified by ConShifu.

detection accuracy of static analysis tools [79]]. Third, run-
time data from Kubernetes clusters can be collected to detect
five categories of defects namely, conditional, CR, property
annotation, unsatisfied dependency, and volume mounting.
Detection for each of these categories is dependent on infor-
mation that can be collected at runtime. An example utility
is ‘kubectl cluster-info’ that can provide cluster information
at runtime [59].

6.2.4 The Need for Automated Configuration Defect Re-
pair Tools for Kubernetes

Our findings highlight the need of developing automated
defect repair tools for Kubernetes configuration scripts. The
top four most frequently occurring fix patterns are configu-
ration value changes, directive fix, property modification,
and rule fix that are applied manually to fix 553 out of
719 defects. In order to develop defect repair techniques,
researchers can use the curated list of defects and their
corresponding fixes that are available as part of our dataset.
Each defect in our dataset is associated with a fix pattern
and linked to its GitHub issue and pull request, enabling
researchers to trace how a reported defect was resolved in
practice. As such, the dataset can support the development
and evaluation of automated defect repair tools, similar to
prior work that has leveraged curated defect-fix datasets for
program repair research [11], [20]. Chen et al. [20] trained
a sequence-to-sequence model using a large corpus of real
bug-fix pairs to automatically generate patches for Java
programs. Bader et al. [11] mined over 1,200 historical
bug—fix commits to learn recurring fix patterns, enabling
it to suggest human-like repairs with high accuracy. Re-
searchers can investigate if the above-mentioned methods
can be applied by using our identified fix patterns. We posit
prior automated defect repair techniques to under-perform
for 8 of the 15 defect categories that have not been reported
in prior software systems.

6.2.5 Prioritizing Validation Efforts Based on Conse-
quences

Our study shows that configuration defects can lead to seri-
ous consequences, such as crashes, outages, and exposure
of unauthorized data. In total, 348 out of 719 defects in
our dataset map to these severe consequences, underscoring
the serious impact of configuration defects on Kubernetes-
based deployment. Mapping defect categories to their con-
sequences provides actionable insights: practitioners can
prioritize validation efforts based on the severity of po-
tential consequences. For example, the entity referencing
category frequently maps to crashes or outages, with 60 out
of 125 defects leading to crashes or outages, and could be
considered high priority for validation efforts.

50
51
52
53
54
55
56

57

58
59

60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83

84

85

86

87
88
89
90
91
92
93
94
95
96
97

98

N o o A W N

© ®

31
32
33
34
35
36
37
38
39

40
41
42
43

44

45

46
47

48

49

50
51
52
53

54

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

6.2.6 Opportunities for Automating Configuration Inex-
ecutability Detection

From Section we observe 52 defects to be related to
configuration inexecutability. We find these defects to not
exhibit any explicit symptoms, such as crashes or outages,
which makes the defect detection process challenging. Ac-
cording to our analysis, practitioners take a reactive ap-
proach where they use the ‘kubectl’ command manually
to identify these defects. This approach is time consuming,
which necessitates development of automated techniques.
One possible future direction can be usage of existing log-
based defect localization techniques [27]. Another possible
future direction could be application of reachability anal-
ysis [110] to detect defects related to configuration inexe-
cutability.

6.3 Threats to Validity
We discuss the limitations of our paper as follows:

Conclusion Validity: The qualitative analysis process is sub-
ject to rater bias as the first and second authors derived
categories for defects. In the case of disagreements, the last
author was the resolver. We acknowledge that the inclusion
of the resolver might have added bias in the qualitative
analysis process. Answers to RQ3 is limiting, as we use eight
tools and may have missed tools not included our paper.
We mitigate this limitation by using a systematic selection
criteria. Additionally, evaluation results for studied tools is
dependent on the dataset created in Section which may
bias the results. Our definition of false positives, which only
considers defects from our curated dataset is limiting as it
may underestimate tool capabilities.

Construct Validity: Our study is susceptible to construct
validity as the defect identification process depends on the
accuracy and completeness of the parsed scripts. ConShifu
is susceptible to miss defects as it uses a rule-based approach
to identify defects. Furthermore, ConShifu can generate
false positives while reporting instances of incorrect Helm-
ing and orphanism. ConShifu may fail to detect instances of
incorrect Helm if there are no Helm scripts, values.yaml
files, or templates.

External Validity: Our findings are obtained from OSS repos-
itories, which may not generalize for configuration scripts
used in proprietary repositories. We mitigate this limitation
by analyzing repositories from GitHub, which is the most
popular code sharing platform.

7 RELATED WORK

Our paper is related with existing research on defect catego-
rization and quality assurance aspects of Kubernetes, which
we describe in the following subsections:

7.1

Software defect categorization has been of interest to re-
searchers since the 1990s. In 1992, Chillarege and col-
leagues [21] proposed the orthogonal defect classification
(ODC) taxonomy, which consists of eight defect categories.
Since then, researchers have used and extended the ODC

Prior Research Related with Defect Categorization

XVi

taxonomy. For instance, Alannsary and Tian [2] and Silva
et al. [90] used ODC to respectively, categorize defects
for software-as-a-service and embedded software systems.
ODC was also extended by Hunny et al. [46] to classify
security vulnerabilities.

Researchers have also developed their own taxonomies
because of ODC’s limitations for modern software sys-
tems [89]. Researchers, such as Yu et al. [107], Wan et al. [96],
Cui et al. [26], and Du et al. [32] in separate publications
derived defect taxonomies respectively, for container run-
time systems, blockchain projects, database systems, and
federated learning systems. Makhshari and Mesbah [68],
Chen et al. [19], Shen et al. [88], Gao et al. [35], Wang et.
at [98], Wang et. al [97] constructed defect taxonomies
respectively, for IoT software projects, deep learning-based
deployment, deep learning compilers, distributed systems,
android applications, and autopilot software systems. Wang
et al. [99] analyzed 83 defects in WeChat Mini-Programs,
and categorized them into 6 categories. Cotroneo et al. [25]
categorized the failures of OpenStack using a bottom-up
approach. Hassan et al. [42] conducted an empirical study
involving 5,110 state reconciliation defects and classify these
defects into 8 categories. Rahman et al. [76] developed a
taxonomy of defects in IaC scripts by applying descriptive
coding with 1,448 defect-related commits. Humbatova et
al. [45] analyzed GitHub issues and Stack Overflow posts to
develop a classification of faults for software projects involv-
ing deep learning. Wang et al. [100] studied configuration
defects that occur when these configurations are provided
at runtime for database and web server systems.

7.2 Prior Research Related with Quality Aspects of Ku-
bernetes

Researchers have shown increasing interest in quality as-
surance for Kubernetes in recent years. Yang et al. [[105]
focused on vulnerabilities in the orchestration layer, and
recommended two practices for enhancing the security of
Kubernetes clusters. Kamieniarz et al. [54] studied the secu-
rity vulnerabilities that can occur in Kubernetes-related de-
ployments. Rahman et al. [77] in particular identified what
types of Kubernetes objects are impacted by security weak-
nesses, such as hard-coded passwords and insecure HTTP.
They [77] also quantified correlations between development
activity metrics and the presence of security weaknesses.
Carmen et al. [16] in their study, created a new taxon-
omy for Kubernetes scheduling techniques, organizing the
techniques into five main domains and highlighting where
current scheduling techniques fall short, especially in terms
of security and performance. Gu et al. [39], Sun et al. [93],
[94], and Xu et al. [103] in separate publications focused
on analyzing and detecting defects related to Kubernetes
controllers. Xu et al. [103] focused on deriving a taxonomy
for defects that occur in Kubernetes operators, which are
specialized controllers. Gu et al. [39] and Sun et al. [93],
[94] focused on deriving testing techniques that can expose
defects in Kubernetes controllers and operators. Barletta et
al. [12] analyzed and classified failures in the Kubernetes or-
chestration layer and developed a fault-injection framework
that targets the cluster’s etcd datastore.

55
56
57
58

59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84

85

86

87
88
89
%
91
92
93
9
95
9%
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

40

41

42
43
44

45

46
47

48

49

50

51

52
53

54

55

56

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Prior research has focused on controller and operator related
defects [39]], [93], [94]. A controller is a core Kubernetes
component that continuously monitors the cluster state and
reconciles it to match the desired configuration, such as
ensuring the correct number of pods, while an operator
is a custom controller that automates complex application-
specific tasks by managing custom resources. Barletta et
al. [12] studied Kubernetes failure at the orchestrator level,
focusing on how etcd datastore corruption affects the core
orchestration platform rather than defects in individual
controllers or operators. The above-mentioned publications
focused on failures caused by defects in these core or ex-
tension mechanisms, as well as runtime and infrastructure-
level issues. In contrast, our work targets configuration
defects in the Kubernetes YAML scripts written by prac-
titioners to define Kubernetes resources. Our taxonomy
provides a categorization of configuration defects, which
highlights configuration scripts as a distinct focus relative
to prior work on operators and controllers. The closest in
spirit to our work is research conducted by Rahman et
al. [77], who only focused on security-related defects. By
investigating configuration defects in general, our study
identifies categories that prior research has not addressed.
The defect categories that we have identified but are not
reported in prior Kubernetes-related papers [12], [15], [39],
751, 1771, 18411871, 193], [94], [113] are: custom resource,
data field, entity referencing, incorrect Helming, names-
paces, orphanism, pod scheduling, property annotation,
unsatisfied dependency, and volume mounting. Also, prior
work have not investigated fix patterns, consequences, and
evaluation of existing static analysis tools. While working
with Kubernetes, practitioners need to use configuration
options related to (i) pods and (ii) state reconciliation.
To configure pods, i.e., abstractions to group containers,
practitioners need to understand non-trivial concepts such
as affinity and annotations. Likewise, to configure state
reconciliation, developers need to understand concepts such
as custom resources. Erroneous usage of the these configura-
tion options can result in defective Kubernetes deployments.

In short, with respect to advancing science, our paper ad-
dresses several gaps in Kubernetes-related prior research by:

1) identifying Kubernetes-specific entities, namely names-
paces, pods, and properties to be defect-related when
using configuration scripts, which prior work has not
identified;

2) characterizing how usage of entity referencing can lead
to defects in configuration scripts for Kubernetes, which
prior work has not examined;

3) providing a mapping between configuration defects and
their consequences as well as fix patterns, which prior
work has not documented;

4) quantifying the support of existing static analysis tools
for detecting identified defect categories, which prior
work has not evaluated; and

5) identifying 7 categories of configuration defects, namely
custom resource, incorrect Helming, namespaces, or-
phanism, pod scheduling, property annotation, and vol-

XVii

ume mounting, that have not been reported in any prior
work.

8 CONCLUSION

Kubernetes is becoming popular in industry as a tool
for automated management of containers. Configuration
defects in Kubernetes can be consequential and, unfortu-
nately, are not uncommon. This paper reports an empir-
ical study about Kubernetes-related configuration defects
alongside their consequences and fix patterns. The goals
of this empirical study are (i) to help practitioners who
use Kubernetes to detect configuration defects, and (ii) to
offer researchers opportunities for improving existing static
analysis tools for detecting those defects. Our study includes
719 defects mined from 185 OSS repositories. We identify
15 defect categories for Kubernetes configuration scripts.
We find that insights obtained from existing defects can be
used to identify previously-unknown defects. For example,
using our linter ConShifu, we identify 26 defects that have
been accepted as valid defects by the practitioners of the
corresponding OSS projects.

Our research study has produced multiple lessons. For
example, we provide recommendations for researchers on
how existing defects that are available as part of our dataset,
can be leveraged to enhance existing static analysis tools
and to develop defect repair techniques for Kubernetes. We
also advocate for incorporating practitioner feedback and
runtime information to improve existing static analysis tools
for Kubernetes configuration scripts.

DATA AVAILABILITY

The datasets and source code wused for the
paper are publicly-available online as a repli-
cation package [112]. URL of the package:

https:/ /figshare.com/s/5c63f862a1abd95{7708.

ACKNOWLEDGMENTS

We thank the PASER group at Auburn University for their
valuable feedback. This research was partially funded by the
U.S. National Science Foundation (NSF) Award # 2310179,
2312321, # CNS-2026928, # CCF-2349961, and # CCEF-
2319472.

REFERENCES

[1] Adrienverge, “yamllint,” Online, 2024, accessed: 2024-06-23.
[Online]. Available: https://github.com/adrienverge/yamllint

[2] M. Alannsary and J. Tian, “Cloud-odc: Defect classification and
analysis for the cloud,” pp. 71-77, 2015, copyright - Copyright
The Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing (World-
Comp) 2015; Document feature - Diagrams; Tables; Graphs; ; Last
updated - 2015-08-21.

[3] A. Ami, K. Moran, D. Poshyvanyk, and A. Nadkarni, ““false
negative - that one is going to kill you’ - understanding
industry perspectives of static analysis based security testing,”
in 2024 IEEE Symposium on Security and Privacy (SP). Los
Alamitos, CA, USA: IEEE Computer Society, may 2024, pp.
23-23. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/5P54263.2024.00019

58

59

60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77

78
79
80
81
82
83
84

85

86

87
88
89

90

91

92
93
94
95

96

97

98
99

100
101
102
103
104
105

106
107
108
109
110
1
112

https://github.com/adrienverge/yamllint
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00019
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00019
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00019

N R

o o

50
51
52
53

54
55
56
57

58
59
60
61

62
63
64

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

(4]

(5]

(6]

(71

(8]

(%]

[10]

[11]

(12]

(13]

[14]

(15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

aquasecurity, “helm - trivy-server should use
trivy.repository:trivy.tag for image if defined,” 2022,
accessed: 2024-06-23. [Online]. Available: https://github.com/
aquasecurity / trivy-operator/issues /729

A. B. Aral, “Dear linux, privileged ports must die,”
August 2022, accessed: 2024-07-17. [Online]. Available: https:
//ar.al/2022/08/30/dear-linux-privileged-ports-must-die/

Argoproj, “application controller needs a liveness probe,” 2019,
accessed: 2024-06-23. [Online]. Available: https://github.com/
argoproj/argo-cd/issues/1782

, “core-install manifest references undefined argocd-server
serviceaccount,” 2021, accessed: 2024-06-23. [Online]. Available:
https:/ /github.com/argoproj/argo-cd/issues /7760

argoproj labs, “operator resources should have unique
labels.” 2022, accessed: 2024-06-23. [Online]. Available: https:
/ / github.com/argoproj-labs/argocd-operator /issues /750

H. Arksey and L. O’Malley, “Scoping studies: towards
a methodological framework,” International Journal of Social
Research Methodology, vol. 8, no. 1, pp. 19-32, 2005. [Online].
Available: https://doi.org/10.1080/1364557032000119616

Aws, “vsphere username escaped resulting in failed
authentication on creating workload cluster,” 2022, accessed:
2024-06-23. [Online]. Available: https://github.com/aws/
eks-anywhere /issues /1639

J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1-27, 2019.

M. Barletta, M. Cinque, C. Di Martino, Z. T. Kalbarczyk, and R. K.
Iyer, “Mutiny! how does kubernetes fail, and what can we do
about it?” in 2024 54th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2024, pp. 1-14.

A. Baur, “Packaging of kubernetes applications,” in Proceedings of
the 2020 OMI Seminars (PROMIS 2020), vol. 1. Universitat Ulm,
2021, pp. 1-1.

blackduck, “Policy-as-code,” 2023, accessed: 2024-06-23.
[Online]. Available: https://www.blackduck.com/glossary/
what-is-policy-as-code.html

D. B. Bose, A. Rahman, and S. I. Shamim, “‘under-
reported’security defects in kubernetes manifests,” in 2021
IEEE/ACM 2nd International Workshop on Engineering and Cyber-
security of Critical Systems (EnCyCriS). 1EEE, 2021, pp. 9-12.

C. Carrién, “Kubernetes scheduling: Taxonomy, ongoing issues
and challenges,” ACM Comput. Surv., vol. 55, no. 7, dec 2022.
[Online]. Available: https://doi.org/10.1145/3539606

H. Chart, “The chart best practices guide,” 2024, accessed:
2024-06-23. [Online]. Available: https://v2-14-0.helm.sh/docs/
chart_best_practices/

Checkov, “Checkov,” Online, 2024, accessed: 2024-06-07. [Online].
Available: https:/ /www.checkov.io/

Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu,
“An empirical study on deployment faults of deep learning
based mobile applications,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 674—685.

Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshy-
vanyk, and M. Monperrus, “Sequencer: Sequence-to-sequence
learning for end-to-end program repair,” IEEE Transactions on
Software Engineering, vol. 47, no. 9, pp. 1943-1959, 2019.

R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus,
B. Ray, and M.-Y. Wong, “Orthogonal defect classification-a con-
cept for in-process measurements,” IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 943-956, Nov 1992.

CNCF, “Container Orchestration,” https://glossary.cnctf.io/
container-orchestration/, 2024, [Online; accessed 24-August-
2024].

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

(35]

[36]

[37]

Xviii

J. Cohen, “A coefficient of agreement for nominal scales,”
Educational and Psychological Measurement, vol. 20, no. 1, pp.
37-46, 1960. [Online]. Available: http://dx.doi.org/10.1177/
001316446002000104

Controlplane, “Kubesec,” Online, 2024, accessed: 2024-06-23.
[Online]. Available: https://kubesec.io/

D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and
N. Bidokhti, “How bad can a bug get? an empirical analysis of
software failures in the openstack cloud computing platform,”
in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York, NY,
USA: Association for Computing Machinery, 2019, p. 200-211.
[Online]. Available: https://doi.org/10.1145/3338906.3338916

Z. Cui, W. Dou, Y. Gao, D. Wang, J. Song, Y. Zheng,
T. Wang, R. Yang, K. Xu, Y. Hu, J. Wei, and T. Huang,
“Understanding transaction bugs in database systems,” in
Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE '24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639207

H. Dai, H. Li, C.-S. Chen, W. Shang, and T.-H. Chen, “Logram: Ef-
ficient log parsing using nn-gram dictionaries,” IEEE Transactions
on Software Engineering, vol. 48, no. 3, pp. 879-892, 2022.

Datree, “Datree,” Online, 2024, accessed: 2024-06-23. [Online].
Available: https://www.datree.io/

Deckhouse, “During installation main queue stucks with up-
meter module,” 2023, accessed: 2024-06-23. [Online]. Available:
https://github.com/deckhouse/deckhouse/issues /3704

R. Donato, “What is schema validation?” 2023, accessed:
2024-06-23. [Online]. Available: https://www.packetcoders.io/
what-is-schema-validation/

D. D’Silva and D. D. Ambawade, “Building a zero trust archi-
tecture using kubernetes,” in 2021 6th International Conference for
Convergence in Technology (12CT), 2021, pp. 1-8.

X. Du, X. Chen, J. Cao, M. Wen, S.-C. Cheung, and
H. Jin, “Understanding the bug characteristics and fix
strategies of federated learning systems,” in Proceedings of
the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2023. New York, NY, USA: Association for
Computing Machinery, 2023, p. 1358-1370. [Online]. Available:
https://doi.org/10.1145/3611643.3616347

elastic, “[metricbeat] dns lookup failure for node host,” 2019,
accessed: 2024-06-23. [Online]. Available: https://github.com/
elastic/helm-charts/issues /394

G. Elbaz, “Static code analysis: Top 7 methods, pros/cons and
best practices,” 2023, accessed: 2024-06-23. [Online]. Available:
https:/ /www.oligo.security /academy/ static-code-analysis

Y. Gao, W. Dou, E Qin, C. Gao, D. Wang, J. Wei, R. Huang,
L. Zhou, and Y. Wu, “An empirical study on crash recovery bugs
in large-scale distributed systems,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018. New York, NY, USA: Association for
Computing Machinery, 2018, p. 539-550. [Online]. Available:
https://doi.org/10.1145/3236024.3236030

N. E. Gold and]. Krinke, “Ethical mining: A case study
on msr mining challenges,” in Proceedings of the 17th
International Conference on Mining Software Repositories, ser.
MSR "20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 265-276. [Online]. Available: https:
//doi.org/10.1145/3379597.3387462

G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a
firehose,” in 2012 9th IEEE Working Conference on Mining Software
Repositories (MSR). 1EEE, 2012, pp. 12-21.

65
66
67
68

69
70

71
72
73
74
75
76
77
78

79
80
81
82
83
84
85

86
87
88

89
90

91
92
93

94
95
96

97
98
99

100
101
102
103
104
105
106
107

108
109
110

111
112
113

114
115
116
117
118
119
120
121

122
123
124
125
126
127

128
129
130

https://github.com/aquasecurity/trivy-operator/issues/729
https://github.com/aquasecurity/trivy-operator/issues/729
https://github.com/aquasecurity/trivy-operator/issues/729
https://ar.al/2022/08/30/dear-linux-privileged-ports-must-die/
https://ar.al/2022/08/30/dear-linux-privileged-ports-must-die/
https://ar.al/2022/08/30/dear-linux-privileged-ports-must-die/
https://github.com/argoproj/argo-cd/issues/1782
https://github.com/argoproj/argo-cd/issues/1782
https://github.com/argoproj/argo-cd/issues/1782
https://github.com/argoproj/argo-cd/issues/7760
https://github.com/argoproj-labs/argocd-operator/issues/750
https://github.com/argoproj-labs/argocd-operator/issues/750
https://github.com/argoproj-labs/argocd-operator/issues/750
https://doi.org/10.1080/1364557032000119616
https://github.com/aws/eks-anywhere/issues/1639
https://github.com/aws/eks-anywhere/issues/1639
https://github.com/aws/eks-anywhere/issues/1639
https://www.blackduck.com/glossary/what-is-policy-as-code.html
https://www.blackduck.com/glossary/what-is-policy-as-code.html
https://www.blackduck.com/glossary/what-is-policy-as-code.html
https://doi.org/10.1145/3539606
https://v2-14-0.helm.sh/docs/chart_best_practices/
https://v2-14-0.helm.sh/docs/chart_best_practices/
https://v2-14-0.helm.sh/docs/chart_best_practices/
https://www.checkov.io/
https://glossary.cncf.io/container-orchestration/
https://glossary.cncf.io/container-orchestration/
https://glossary.cncf.io/container-orchestration/
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
https://kubesec.io/
https://doi.org/10.1145/3338906.3338916
https://doi.org/10.1145/3597503.3639207
https://www.datree.io/
https://github.com/deckhouse/deckhouse/issues/3704
https://www.packetcoders.io/what-is-schema-validation/
https://www.packetcoders.io/what-is-schema-validation/
https://www.packetcoders.io/what-is-schema-validation/
https://doi.org/10.1145/3611643.3616347
https://github.com/elastic/helm-charts/issues/394
https://github.com/elastic/helm-charts/issues/394
https://github.com/elastic/helm-charts/issues/394
https://www.oligo.security/academy/static-code-analysis
https://doi.org/10.1145/3236024.3236030
https://doi.org/10.1145/3379597.3387462
https://doi.org/10.1145/3379597.3387462
https://doi.org/10.1145/3379597.3387462

44
45
46
47

48
49
50

51
52
53
54

55
56
57
58

59
60
61
62
63

64
65
66
67

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

[53]

grafana, “Grafana operator 5.4.1 resource limit too low,
grafana-operator-controller-manager pod won't start[bug],”
2023, accessed: 2024-06-23. [Online]. Available: https://github.
com/grafana/grafana-operator/issues /1255

J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri,
O. Legunsen, and T. Xu, “Acto: Automatic end-to-end testing
for operation correctness of cloud system management,”
in Proceedings of the 29th Symposium on Operating Systems
Principles, ser. SOSP ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 96-112. [Online]. Available:
https://doi.org/10.1145/3600006.3613161

H. Guan, Y. Xiao, J. Li, Y. Liu, and G. Bai, “A comprehensive
study of real-world bugs in machine learning model optimiza-
tion,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), 2023, pp. 147-158.

hashicorp, “Consul server statefulset volume name isn’t
truncated,” 2021, accessed: 2024-06-23. [Online]. Available:
https://github.com /hashicorp/consul-k8s/issues /798

M. M. Hassan, J. Salvador, S. K. K. Santu, and A. Rahman, “State
reconciliation defects in infrastructure as code,” Proceedings of the
ACM on Software Engineering, vol. 1, no. FSE, pp. 1865-1888, 2024.

W. He, P. Di, M. Ming, C. Zhang, T. Su, S. Li, and Y. Sui, “Finding
and understanding defects in static analyzers by constructing
automated oracles,” Proc. ACM Softw. Eng., vol. 1, no. FSE, jul
2024. [Online]. Available: https://doi.org/10.1145/3660781

K. Huang, B. Chen, S. Wu, J. Cao, L. Ma, and X. Peng,
“Demystifying dependency bugs in deep learning stack,”
in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2023. New York, NY,
USA: Association for Computing Machinery, 2023, p. 450-462.
[Online]. Available: https://doi.org/10.1145/3611643.3616325

N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning
systems,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE '20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1110-1121.
[Online]. Available: https://doi.org/10.1145/3377811.3380395

U. Hunny, M. Zulkernine, and K. Weldemariam, “Osdc: Adapt-
ing odc for developing more secure software,” 03 2013, pp. 1131-
1136.

IEEE, “1EEE standard classification for software anomalies,” IEEE
Std 1044-2009 (Revision of IEEE Std 1044-1993), pp. 1-23, Jan 2010.

istio, “Add accessmodes option to helm
grafana chart,” 2018, accessed: 2024-06-23. [On-
line]. Available: https:/ /github.com/istio/istio/commit/

64a46ebdd9eec1e805a9800e09e687c0968a4462

jaegertracing, “Incorrect image tag in the published yaml,” 2021,
accessed: 2024-06-23. [Online]. Available: https://github.com/
jaegertracing/jaeger-operator/issues/ 1666

Jake Page, “Kubernetes fail compilation: but they keep
getting worse,” https:/ /medium.com/@jake.page91/

kubernetes-fail-compilation-but-they-keep-getting-worse-c6f4fb3e6b38),

2024, [Online; accessed 29-July-2024].

Jayme Howard, “You Broke Reddit: The Pi-Day Outage,”
https:/ /www.reddit.com/r/RedditEng/comments/11xx500/
you_broke_reddit_the_piday_outage/, 2024, [Online; accessed
30-July-2024].

L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “The symptoms,
causes, and repairs of bugs inside a deep learning library,”
Journal of Systems and Software, vol. 177, p. 110935, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0164121221000327.

K. Kamieniarz and W. Mazurczyk, “A comparative study on
the security of kubernetes deployments,” in 2024 International
Wireless Communications and Mobile Computing (IWCMC). 1EEE,
2024, pp. 0718-0723.

[54]

[55]

[56]

(57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

XiX

——, “A comparative study on the security of kubernetes deploy-
ments,” in 2024 International Wireless Communications and Mobile
Computing (IWCMC), May 2024, pp. 0718-0723.

Kedacore, “fix: adj indent of extravolumes volumemounts
in 14-keda-deployment,” 2023, accessed: 2024-06-23. [Online].
Available: https:/ /github.com/kedacore/charts/pull /419

kserve, “Kserve installation fails with kubeflow due to wrong
cert injection namespace for servingruntime webhook,” 2023,
accessed: 2024-06-23. [Online]. Available: https://github.com/
kserve/kserve/issues/3187

kubernetes, “Kep-2067: Rename the kubeadm "master"
label and taint,” 2022. [Online]. Available: |https:
/ / github.com/kubernetes/enhancements/blob/master/keps/
sig-cluster-lifecycle /kubeadm /2067-rename-master-label-taint/
README.md

Kubernetes User Case Studies, July 2024. [Online]. Available:
https:/ /kubernetes.io/case-studies/

Kubernetes, “Kubernetes Documentation,” https://kubernetes.
io/docs/home/| 2024, [Online; accessed 14-August-2024].

kubernetes sigs, “Failed to create listener: bind: permission
denied,” 2021, accessed: 2024-06-23. [Online]. Available: https:
/ / github.com/kubernetes-sigs/metrics-server/issues /782

——, “Error on ebs-csi-controller pod,” 2022, accessed: 2024-
06-23. [Online]. Available: https://github.com/kubernetes-sigs/
aws-ebs-csi-driver/issues /1357

kyverno, “[bug] clusterrole kyverno:events tighten scope on
apigroups,” 2022, accessed: 2024-06-23. [Online]. Available:
https://github.com/kyverno/kyverno/issues/3222

J. R. Landis and G. G. Koch, “The measurement of observer
agreement for categorical data,” Biometrics, vol. 33, no. 1, pp.
159-174, 1977. [Online]. Available: http:/ /www.jstor.org/stable/
2529310

K. Li, Y. Xue, S. Chen, H. Liu, K. Sun, M. Hu, H. Wang,
Y. Liu, and Y. Chen, “Static application security testing (sast)
tools for smart contracts: How far are we?” Proc. ACM
Softw. Eng., vol. 1, no. FSE, Jul. 2024. [Online]. Available:
https://doi.org/10.1145/3660772

linode, “The gatekeeper post install job cannot run pod due
to psp and insufficient securitycontext,” 2021, accessed: 2024-
06-23. [Online]. Available: https://github.com/linode/apl-core/
issues /688

F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” SIGPLAN Not., vol. 51, no. 1, p. 298-312, Jan. 2016.
[Online]. Available: https://doi.org/10.1145/2914770.2837617

longhorn, “[bug] backing image resync not work on v1.2.x,”
2022, accessed: 2024-06-23. [Online]. Available: https://github.
com/longhorn/longhorn/issues /4738

A. Makhshari and A. Mesbah, “Iot bugs and development
challenges,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 2021, pp. 460-472.

P. Mendis, W. Reeves, M. A. Babar, Y. Zhang, and
A. Rahman, “Evaluating the quality of open source ansible
playbooks: An executability perspective,” in Proc. of SEA4DQ,
ser. SEA4DQ 2024. New York, NY, USA: Association for
Computing Machinery, 2024, p. 2-5. [Online]. Available:
https://doi.org/10.1145/3663530.3665019

Mirantis, “What are the primary reasons your organization
is using Kubernetes?” 2021. [Online]. Available: https://www.
mirantis.com/cloud-case-studies/paypal/

N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan,
“Curating GitHub for engineered software projects,” Empirical
Software Engineering, pp. 1-35, 2017. [Online]. Available:
http://dx.doi.org/10.1007 /510664-017-9512-6

68
69
70

4l
72
73

74
75
76
77

78
79
80
81
82

83
84

85
86

87
88
89

90
91
92

93
94
95

96
97
98
99

100
101
102
108
104

105
106
107
108

109
110
1

112
113
114

115
116
117

118
119
120
121
122
123

124
125
126

127
128
129
130

https://github.com/grafana/grafana-operator/issues/1255
https://github.com/grafana/grafana-operator/issues/1255
https://github.com/grafana/grafana-operator/issues/1255
https://doi.org/10.1145/3600006.3613161
https://github.com/hashicorp/consul-k8s/issues/798
https://doi.org/10.1145/3660781
https://doi.org/10.1145/3611643.3616325
https://doi.org/10.1145/3377811.3380395
https://github.com/istio/istio/commit/64a46ebdd9eec1e805a9800e09e687c0968a4462
https://github.com/istio/istio/commit/64a46ebdd9eec1e805a9800e09e687c0968a4462
https://github.com/istio/istio/commit/64a46ebdd9eec1e805a9800e09e687c0968a4462
https://github.com/jaegertracing/jaeger-operator/issues/1666
https://github.com/jaegertracing/jaeger-operator/issues/1666
https://github.com/jaegertracing/jaeger-operator/issues/1666
https://medium.com/@jake.page91/kubernetes-fail-compilation-but-they-keep-getting-worse-c6f4fb3e6b38
https://medium.com/@jake.page91/kubernetes-fail-compilation-but-they-keep-getting-worse-c6f4fb3e6b38
https://medium.com/@jake.page91/kubernetes-fail-compilation-but-they-keep-getting-worse-c6f4fb3e6b38
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.sciencedirect.com/science/article/pii/S0164121221000327
https://www.sciencedirect.com/science/article/pii/S0164121221000327
https://www.sciencedirect.com/science/article/pii/S0164121221000327
https://github.com/kedacore/charts/pull/419
https://github.com/kserve/kserve/issues/3187
https://github.com/kserve/kserve/issues/3187
https://github.com/kserve/kserve/issues/3187
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://kubernetes.io/case-studies/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/kubernetes-sigs/metrics-server/issues/782
https://github.com/kubernetes-sigs/metrics-server/issues/782
https://github.com/kubernetes-sigs/metrics-server/issues/782
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/issues/1357
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/issues/1357
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/issues/1357
https://github.com/kyverno/kyverno/issues/3222
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://doi.org/10.1145/3660772
https://github.com/linode/apl-core/issues/688
https://github.com/linode/apl-core/issues/688
https://github.com/linode/apl-core/issues/688
https://doi.org/10.1145/2914770.2837617
https://github.com/longhorn/longhorn/issues/4738
https://github.com/longhorn/longhorn/issues/4738
https://github.com/longhorn/longhorn/issues/4738
https://doi.org/10.1145/3663530.3665019
https://www.mirantis.com/cloud-case-studies/paypal/
https://www.mirantis.com/cloud-case-studies/paypal/
https://www.mirantis.com/cloud-case-studies/paypal/
http://dx.doi.org/10.1007/s10664-017-9512-6

N R

® N o o

39

40
4
42
43
44
45
46

47
48
49

50
51
52
53

54
55
56
57

58
59
60
61

62
63
64
65
66

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[72]

(73]

(74]

[75]

[76]

[77]

[78]

[79]

(80]

[81]

(82]

[83]

[84]

[85]

[86]

(87]

Q.-S. Phan, K.-H. Nguyen, and T. Nguyen, “The challenges of
shift left static analysis,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2023, pp. 340-342.

Prometheus-community, “[kube-prometheus-stack] complex
config templating in alertmanager results into helm warning,”
2023, accessed: 2024-06-23. [Online]. Available: https://github.
com/prometheus-community /helm-charts/issues /2950

N. Provos, M. Friedl], and P. Honeyman, “Preventing privilege es-
calation,” in 12th USENIX Security Symposium (USENIX Security
03), 2003.

A. Rahman, G. Dozier, and Y. Zhang, “Authorship of minor
contributors in kubernetes configuration scripts: An exploratory
study,” in Proceedings of the 33rd ACM International Conference on
the Foundations of Software Engineering, 2025, pp. 1424-1427.

A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of
eight: A defect taxonomy for infrastructure as code scripts,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE '20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 752-764.
[Online]. Available: https://doi.org/10.1145/3377811.3380409

A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security
misconfigurations in open source kubernetes manifests: An
empirical study,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 4,
May 2023. [Online]. Available: https://doi.org/10.1145/3579639

Ravi Patel, “Introduction to Container Or-
chestration,” https:/ /medium.com/@ravipatel.it/
introduction-to-container-orchestration-e219e36007ab, 2024,
[Online; accessed 22-August-2024].

S. Reis, R. Abreu, M. d’Amorim, and D. Fortunato, “Leveraging
practitioners’ feedback to improve a security linter,” in Proceed-
ings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE '22. New York, NY, USA: Associ-
ation for Computing Machinery, 2023.

C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and
C. Jaspan, “Lessons from building static analysis tools at
google,” Commun. ACM, vol. 61, no. 4, p. 58-66, Mar. 2018.
[Online]. Available: https://doi.org/10.1145/3188720

J. Saldafia, The coding manual for qualitative researchers. Sage, 2015.

C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann,
Y. Guo, and S. Godfrey, “Defect categorization: Making use of a
decade of widely varying historical data,” in Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ‘08. New York, NY,
USA: Association for Computing Machinery, 2008, p. 149-157.
[Online]. Available: https://doi.org/10.1145/1414004.1414030

SEC, “U.S. SEC,” https://www.sec.gov/Archives/edgar/data/
1713445/000162828024006294 / reddits-1q423.htm, 2024, [Online;
accessed 22-Feb-2024].

M. S. . Shamim, F. A. Bhuiyan, and A. Rahman, “Xi command-
ments of kubernetes security: A systematization of knowledge
related to kubernetes security practices,” 2020 IEEE Secure Devel-
opment (SecDev), pp. 58-64, 2020.

S. I. Shamim, H. Hu, and A. Rahman, “Dynamic application
security testing for kubernetes deployment: An experience report
from industry,” in Proceedings of the 33rd ACM International Confer-
ence on the Foundations of Software Engineering, 2025, pp. 514-519.

, “On prescription or off prescription? an empirical study of
community-prescribed security configurations for kubernetes,”
in 2025 IEEE/ACM 47th International Conference on Software Engi-
neering (ICSE). IEEE Computer Society, 2025, pp. 707-707.

S. 1. Shamim, F Wu, H. Shahriar, A. Skjellum, and
A. Rahman, “ Authentic Learning Exercise for Kubernetes
Misconfigurations: An Experience Report of Student Perceptions
;7 in 2025 IEEE/ACM 37th International Conference on Software
Engineering Education and Training (CSEET). Los Alamitos,

(88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

XX

CA, USA: IEEE Computer Society, May 2025, pp. 292-
302. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/CSEET66350.2025.00037

Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen,
“A comprehensive study of deep learning compiler bugs,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2021. New York, NY,
USA: Association for Computing Machinery, 2021, p. 968-980.
[Online]. Available: https://doi.org/10.1145/3468264.3468591

N. Silva and M. Vieira, “Experience report: Orthogonal classifi-
cation of safety critical issues,” in 2014 IEEE 25th International
Symposium on Software Reliability Engineering, 2014, pp. 156-166.

——, “Software for embedded systems: a quality assessment
based on improved odc taxonomy,” in Proceedings of the
31st Annual ACM Symposium on Applied Computing, ser.
SAC ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 1780-1783. [Online]. Available: https:
//doi.org/10.1145/2851613.2851908

Snyk, “What is container orchestration?” https://snyk.io/learn/
container-security /container-orchestration/, 2024, [Online; ac-
cessed 23-August-2024].

StackRox, “Kubelinter documentation,” Online, 2024, accessed:
2024-06-23. [Online]. Available: https://docs.kubelinter.io/#/

X. Sun, W. Luo, J. T. Gu, A. Ganesan, R. Alagappan, M. Gasch,
L. Suresh, and T. Xu, “Automatic reliability testing for cluster
management controllers,” in 16th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 22), 2022, pp. 143-
159.

X.Sun, W. Ma, J. T. Gu, Z. Ma, T. Chajed,]. Howell, A. Lattuada,
O. Padon, L. Suresh, A. Szekeres et al., “Anvil: Verifying liveness
of cluster management controllers,” in 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24), 2024,
pp. 649-666.

L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug
characteristics in open source software,” Empirical Softw. Engg.,
vol. 19, no. 6, p. 1665-1705, dec 2014. [Online]. Available:
https://doi.org/10.1007 /s10664-013-9258-8

Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in
blockchain systems: A large-scale empirical study,” in 2017
IEEE/ACM 14th International Conference on Mining Software Repos-
itories (MSR), 2017, pp. 413-424.

D. Wang, S. Li, G. Xiao, Y. Liu, and Y. Sui, “An exploratory
study of autopilot software bugs in unmanned aerial vehicles,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 20-31. [Online].
Available: https://doi.org/10.1145/3468264.3468559

J. Wang, Y. Jiang, T. Su, S. Li, C. Xu, J. Lu, and Z. Su, “Detecting
non-crashing functional bugs in android apps via deep-state
differential analysis,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2022. New York, NY,
USA: Association for Computing Machinery, 2022, p. 434—446.
[Online]. Available: https://doi.org/10.1145/3540250.3549170

T. Wang, Q. Xu, X. Chang, W. Dou, J. Zhu, J. Xie, Y. Deng, J. Yang,
J. Yang,]. Wei, and T. Huang, “Characterizing and detecting bugs
in wechat mini-programs,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE '22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 363-375.
[Online]. Available: https://doi.org/10.1145/3510003.3510114

T. Wang, Z. Jia, S. Li, S. Zheng, Y. Yu, E. Xu, S. Peng, and
X. Liao, “Understanding and detecting on-the-fly configuration
bugs,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), 2023, pp. 628-639.

67
68
69

70
il
72

74
75
76

77
78
79

80
81
82
83
84
85

86
87
88

89
920

91
92
93
94
95

96
97
98
99
100

101
102
103
104

105
106
107
108

109
110
m
112
113
114
115

116
117
118
119
120
121
122

128
124
125
126
127
128

129
130
131
132

https://github.com/prometheus-community/helm-charts/issues/2950
https://github.com/prometheus-community/helm-charts/issues/2950
https://github.com/prometheus-community/helm-charts/issues/2950
https://doi.org/10.1145/3377811.3380409
https://doi.org/10.1145/3579639
https://medium.com/@ravipatel.it/introduction-to-container-orchestration-e219e36007ab
https://medium.com/@ravipatel.it/introduction-to-container-orchestration-e219e36007ab
https://medium.com/@ravipatel.it/introduction-to-container-orchestration-e219e36007ab
https://doi.org/10.1145/3188720
https://doi.org/10.1145/1414004.1414030
https://www.sec.gov/Archives/edgar/data/1713445/000162828024006294/reddits-1q423.htm
https://www.sec.gov/Archives/edgar/data/1713445/000162828024006294/reddits-1q423.htm
https://www.sec.gov/Archives/edgar/data/1713445/000162828024006294/reddits-1q423.htm
https://doi.ieeecomputersociety.org/10.1109/CSEET66350.2025.00037
https://doi.ieeecomputersociety.org/10.1109/CSEET66350.2025.00037
https://doi.ieeecomputersociety.org/10.1109/CSEET66350.2025.00037
https://doi.org/10.1145/3468264.3468591
https://doi.org/10.1145/2851613.2851908
https://doi.org/10.1145/2851613.2851908
https://doi.org/10.1145/2851613.2851908
https://snyk.io/learn/container-security/container-orchestration/
https://snyk.io/learn/container-security/container-orchestration/
https://snyk.io/learn/container-security/container-orchestration/
https://docs.kubelinter.io/#/
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1145/3468264.3468559
https://doi.org/10.1145/3540250.3549170
https://doi.org/10.1145/3510003.3510114

N

® N o o

20
21

22
23
24
25
26

27
28
29

30
31

32
33
34

35
36
37

38
39

40
41
42
43
44

45
46
47
48

49
50
51
52
53

54
55
56
57
58
59

60

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

S. Wickramasinghe, “Static code analysis: The complete
guide to getting started with sca,” 2023, accessed: 2024-06-
23. [Online]. Available: https://www.splunk.com/en_us/blog/
learn/static-code-analysis.html

B. Xu, S. Wu,]. Xiao, H. Jin, Y. Zhang, G. Shi, T. Lin, J. Rao, L. Yi,
and J. Jiang, “Sledge: Towards efficient live migration of docker
containers,” in 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD), 2020, pp. 321-328.

Q. Xu, Y. Gao, and J. Wei, “An empirical study on kubernetes
operator bugs,” in Proceedings of the 33nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA 2024.
New York, NY, USA: Association for Computing Machinery,
2024.

H. Yang, Y. Nong, T. Zhang, X. Luo, and H. Caij,
“Learning to detect and localize multilingual bugs,” Proc. ACM
Softw. Eng., vol. 1, no. FSE, jul 2024. [Online]. Available:
https://doi.org/10.1145 /3660804

Y. Yang, W. Shen, B. Ruan, W. Liu, and K. Ren, “Security chal-
lenges in the container cloud,” 12 2021, pp. 137-145.

Yannh, “kubeconform,” Online, 2024, accessed: 2024-06-23.
[Online]. Available: https://github.com/yannh/kubeconform

J. Yu, X. X. Xie, C. Zhang, S. Chen, Y. Li, and W. Shen, “Bugs
in pods: Understanding bugs in container runtime systems,” in
Proceedings of the 33nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2024. New York, NY,
USA: Association for Computing Machinery, 2024.

Zalando, “Issues with postgres-ui-operator v1.10.0,” 2023,
accessed: 2024-06-23. [Online]. Available: https://github.com/
zalando/postgres-operator/issues/2302

Zegl, “Kube-score,” Online, 2024, accessed: 2024-06-23. [Online].
Available: https://github.com/zegl/kube-score

J. Zhang, R. Piskac, E. Zhai, and T. Xu, “Static detection of silent
misconfigurations with deep interaction analysis,” Proc. ACM
Program. Lang., vol. 5, no. OOPSLA, oct 2021.

U. Zhang, Yue Paul, , and A. Rahman, “Con-shifu docker
image,” |https://hub.docker.com/r/zyuel10026/conshifu-tool,
2024, [Online; accessed 12-Jan-2025].

, “Replication package for paper,” https://doi.org/10.6084/
m9.figshare.26511229.v1, 2024, [Online; accessed 12-Jan-2025].

Y. Zhang, R. Meredith, W. Reeves,]J. Coriolano, M. A. Babar,
and A. Rahman, “Does generative ai generate smells related to
container orchestration?: An exploratory study with kubernetes
manifests,” in Proceedings of the 21st International Conference on
Mining Software Repositories, 2024, pp. 192-196.

Y. Zhang,]J. Murphy, and A. Rahman, “Come for syntax, stay
for speed, write secure code: an empirical study of security
weaknesses in julia programs,” Empirical Software Engineering,
vol. 30, no. 2, p. 58, 2025.

W. Zheng, C. Feng, T. Yu, X. Yang, and X. Wu, “Towards
understanding bugs in an open source cloud management stack:
An empirical study of openstack software bugs,” J. Syst. Softw.,
vol. 151, no. C, p. 210-223, May 2019. [Online]. Available:
https://doi.org/10.1016/j.,jss.2019.02.025

Yue Zhang Yue Zhang is a PhD student at
Auburn University. Her research interests is in
software engineering and data science. She re-
ceived the B.E. in Computer Science and Tech-
nology from the Anhui Jianzhu University, Hefei,
China, in 2021.

XXi

Uchswas Paul Uchswas Paul is a Ph.D. student
in Computer Science at North Carolina State
University, USA. He earned his bachelor's de-
gree from Khulna University of Engineering and
Technology in 2018. Before joining his doctorate,
he gained experience in industry and academia.
His research interests lie in software engineering
and large language models.

Marcelo d’Amorim Marcelo d’/Amorim is an As-
sociate Professor in Computer Science at the
North Carolina State University, USA. He ob-
tained his PhD from the University of lllinois at
Urbana-Champaign in 2007 and his MS and BS
degrees from UFPE, Brazil, in 2001 and 1997,
respectively. Marcelo’s research goal is to help
developers build correct software. He is inter-
ested in preventing, finding, diagnosing, and re-
pairing software bugs and vulnerabilities.

Akond Rahman Akond Rahman is an assis-
tant professor at Auburn University. His research
interests include DevOps and secure software
development. He graduated with a PhD from
North Carolina State University, an M.Sc. in
Computer Science and Engineering from Uni-
versity of Connecticut, and a B.Sc. in Computer
Science and Engineering from Bangladesh Uni-
versity of Engineering and Technology. He won
the ACM SIGSOFT Doctoral Symposium Award
at ICSE in 2018, the ACM SIGSOFT Distin-
guished Paper Award at ICSE in 2019, the CSC Distinguished Dis-
sertation Award, and the COE Distinguished Dissertation Award from
NC State in 2020. He actively collaborates with industry practitioners
from GitHub, WindRiver, and others. To know more about his work visit
https://akondrahman.github.io/

61
62
63
64
65
66
67
68

69

70
71
72
73
74
75
76
77
78
79
80

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

https://www.splunk.com/en_us/blog/learn/static-code-analysis.html
https://www.splunk.com/en_us/blog/learn/static-code-analysis.html
https://www.splunk.com/en_us/blog/learn/static-code-analysis.html
https://doi.org/10.1145/3660804
https://github.com/yannh/kubeconform
https://github.com/zalando/postgres-operator/issues/2302
https://github.com/zalando/postgres-operator/issues/2302
https://github.com/zalando/postgres-operator/issues/2302
https://github.com/zegl/kube-score
https://hub.docker.com/r/zyue110026/conshifu-tool
https://doi.org/10.6084/m9.figshare.26511229.v1
https://doi.org/10.6084/m9.figshare.26511229.v1
https://doi.org/10.6084/m9.figshare.26511229.v1
https://doi.org/10.1016/j.jss.2019.02.025

	Introduction
	Background
	RQ1: Categories of Defects in Kubernetes Configuration Scripts
	Methodology
	Identify Defects from OSS projects
	Derive Defect Categories
	Scoping Review

	Answer to RQ1
	Answer to RQ1: Defect Categories
	Comparison with Defect Categories for Previously-studied Software Systems
	Results for RQ1: Frequency

	RQ2: Consequences and Fix Patterns
	Methodology
	Deriving Consequences
	Deriving Fix Patterns

	Answer to RQ2
	Answer to RQ2: Consequences
	Results for RQ2: Fix Patterns

	RQ3: Evaluation of Static Analysis Tools for Detecting Defects
	RQ3.a: Defect Categories Supported by Static Analysis Tools
	Methodology
	Results for RQ3.a

	RQ3.b: Defect Detection with ConShifu
	Methodology
	Results for RQ3.b

	Discussion
	Significance of Our Empirical Study
	Implications of Our Findings
	Prioritizing Validation Efforts Based on Defect Frequency
	`Shift Left' Approach Towards Defect Detection
	The Need for Enhancing Static Analysis Tools for Kubernetes
	The Need for Automated Configuration Defect Repair Tools for Kubernetes
	Prioritizing Validation Efforts Based on Consequences
	Opportunities for Automating Configuration Inexecutability Detection

	Threats to Validity

	Related Work
	Prior Research Related with Defect Categorization
	Prior Research Related with Quality Aspects of Kubernetes

	Conclusion
	References
	Biographies
	Yue Zhang
	Uchswas Paul
	Marcelo d'Amorim
	Akond Rahman

