
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING i

Configuration Defects in Kubernetes
Yue Zhang, Uchswas Paul, Marcelo d’Amorim, and Akond Rahman, Member, IEEE

Abstract—Kubernetes is a tool that facilitates rapid deployment of software. Unfortunately, configuring Kubernetes is prone to errors.
Configuration defects are not uncommon and can result in serious consequences. This paper reports an empirical study about
configuration defects in Kubernetes with the goal of helping practitioners detect and prevent these defects. We study 719 defects that
we extract from 2,260 Kubernetes configuration scripts using open source repositories. Using qualitative analysis, we identify 15
categories of defects, of which 7 have not been reported in previously-studied software systems. We find 8 publicly available static
analysis tools to be capable of detecting 8 of the 15 defect categories. We find that the highest precision and recall of those tools are for
defects related to data fields. We develop a linter to detect two categories of defects that cause serious consequences, which none of
the studied tools are able to detect. Our linter revealed 26 previously-unknown defects that have been confirmed by practitioners, 19 of
which have already been fixed. We conclude our paper by providing recommendations on how defect detection and repair techniques
can be used for Kubernetes configuration scripts. The datasets and source code used for the paper are publicly available online.

Index Terms—configuration, container orchestration, defect, devops, empirical study, Kubernetes

✦

1 INTRODUCTION

1 THE use of multiple containers to deploy software2

projects is a common practice today [102], e.g., Pay-3

pal uses 200,000 containers to speed up financial transac-4

tions [70]. Setting up and managing multiple containers5

manually is considered impractical and prone to errors [22],6

[78], [91]. For that reason, the practice of container orches-7

tration advocates for automated management of containers with8

tools, such as Kubernetes [77] that has yielded benefits9

for organizations [58]. OpenAI reported that Kubernetes10

enabled a reduction of deployment time from “a couple11

of months” to “two or three days.” [58] Kubernetes usage12

aided Adidas to reduce the load time for their e-commerce13

website by half, and increase the release frequency from14

once every 4∼6 weeks to 3∼4 times a day [58].15

Unfortunately, Kubernetes configuration scripts are not im-16

mune to defects. In March 2023, the social media platform17

Reddit experienced a 5 hour-long outage that impacted mil-18

lions of its users [51], [83]. The outage occurred because of a19

defect in a configuration script affecting the network traffic20

between containers [50], [51]. Figure 1 presents an YAML21

code snippet showcasing how certain Kubernetes-related22

configurations were specified when the outage occurred.23

The defect is due to the incorrect definition of configura-24

tion options nodeSelector and peerSelector, which25

used the value node-role.kubernetes.io/master in-26

stead of node-role.kubernetes.io/control-plane.27

The string master in the configuration value became ob-28

solete with the release of Kubernetes 1.24 [57]. The enti-29

ties nodeSelector and peerSelector are responsible30

to route the network traffic across containers. As a result31

of this defect, traffic was routed to a destination that does32

Yue Zhang is with the Department of Computer Science and Software
Engineering, Auburn University, Auburn, Alabama, USA
Uchswas Paul is with the Department of Computer Science, NC State
University, Raleigh, NC, USA
Marcelo d’Amorim is with the Department of Computer Science, NC State
University, Raleigh, NC, USA
Akond Rahman is with the Department of Computer Science and Software
Engineering, Auburn University, Auburn, Alabama, USA

metadata:
annotations:

...
spec:
asNumber: 0

- nodeSelector: has(node-role.kubernetes.io/master)
+ nodeSelector: has(node-role.kubernetes.io/control-plane)
peerIP: ","

- peerSelector: has(node-role.kubernetes.io/master)
+ peerSelector: has(node-role.kubernetes.io/control-plane)

Fig. 1: Excerpt of the configuration defect that caused the
Reddit outage [51].

not exist, resulting in the outage. This defect illustrates 33

the importance of understanding configuration defects in 34

Kubernetes-related computing infrastructure. 35

Our paper presents an empirical study about configuration 36

defects in Kubernetes with the goals of assisting practitioners 37

in preventing defects and guiding researchers in developing auto- 38

mated tools to detect those defects. The results of the study en- 39

able researchers and practitioners (i) to gain insights about 40

the defects in Kubernetes-based computing infrastructure; 41

(ii) to assess the capabilities of existing tools in identifying 42

defects; and (iii) to develop techniques to identify latent 43

defects that occur during Kubernetes-based configuration 44

management. 45

While the importance of defect categorization has been 46

well-acknowledged in software engineering research [21], 47

[45], [82], a systematic characterization of defects related 48

to Kubernetes configuration management remains under 49

explored. The paper addresses the two following key as- 50

pects: (i) an in-depth study on root causes of defects, their 51

consequences, and fix patterns for Kubernetes configuration 52

scripts; and (ii) an exploratory study of the ability to detect 53

static analysis tools. Although there are prior empirical 54

studies on Kubernetes including prior publications from the 55

authors of this paper [75], [77], [85], [86], [103], [113], these 56

publications have not addressed how configurations of 57

Kubernetes-based deployments are specified, and how these 58

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ii

specifications can result in defects. The novelty of this paper1

stems from expanding and detailing the understanding of2

defects in this domain. We systematically characterize how3

configuration-related defects occur using code constructs in4

configuration scripts. This characterization resulted in 155

defect categories, 7 of which have not been reported for6

previously-studied software systems [42], [76], [88], [104] as7

well as for Kubernetes-related research investigations [12],8

[15], [75], [77], [84]–[86], [103], [113].9

We answer the following research questions:10

• RQ1 [Categories]: What are the categories of defects in11

Kubernetes configuration management?12

• RQ2 [Consequences and Fix Patterns]: What categories13

of consequences and fix patterns map to defects that occur14

during Kubernetes configuration management?15

• RQ3 [Tool Support]: How frequently do static analysis16

tools support the detection of defects that occur during17

Kubernetes configuration management?18

We analyze 719 defects that occur in 2,260 configuration19

scripts mined from 185 open source software (OSS) reposi-20

tories. We use a qualitative analysis technique called open21

coding [81] with the obtained data to derive defect cate-22

gories, consequences, and fix patterns. Using the data, we23

systematically evaluate the defect detection capabilities of 824

publicly available static analysis tools for Kubernetes. Our25

empirical study provides insights on the nature of config-26

uration defects and identifies opportunities for developing27

defect detection techniques for Kubernetes. For example, we28

find that 533 of the 719 defects are found to cause crashes,29

incorrect operations, or outages. We construct a linter that30

detects two categories of defects that cause serious con-31

sequences, such as crashes and outages. These two defect32

categories are not detected by any of the 8 studied tools.33

With the help of the linter, we have identified 26 previously-34

unknown defects that have been confirmed by practitioners,35

and 19 have already been fixed.36

Contributions: We list our contributions as follows:37

• An evaluation on the performance of static analysis tools38

to detect defects that occur during Kubernetes configura-39

tion management (Section 5.1.2);40

• A categorization of consequences and fix patterns for41

defects that occur during Kubernetes configuration man-42

agement (Section 4.2); and43

• A list of derived defect categories for Kubernetes configu-44

ration management (Section 3.2).45

Dataset Availability: Datasets and source code used in46

our paper are publicly available online [112]. The dataset47

contains data where each of the 719 defects is mapped to48

their corresponding defect category, consequence, and fix49

pattern. Source code to construct our linter is available. To50

further support reproducibility, we have made ConShifu51

available as a Docker image [111], along with instructions52

on how to install and run the tool.53

2 BACKGROUND54

Kubernetes is the most popular tool to implement container55

orchestration. Any computing infrastructure managed by56

Control Plane Kubernetes Nodes

API Server

Controller

Scheduler

Developer Script

etcd

POD-1

Node-1

POD-2

POD-3

POD-4

Node-2

POD-5

Fig. 2: An overview of the components in a Kubernetes
cluster.

Kubernetes is referred to as a Kubernetes cluster [59]. Ku- 57

bernetes uses objects to provision the cluster computing 58

infrastructure. An object is a persistent entity representing 59

the state of the cluster. A pod is a common kind of object; 60

it is the most fundamental deployment unit that groups 61

multiple containers together. Configurations for pods and 62

other Kubernetes entities are specified using configuration 63

scripts that are typically written in the YAML format. As 64

Figure 2 shows, the API server stores configurations in a 65

database called ‘etcd.’ With the provided configurations, 66

the API server decides which pods can host the given 67

containers. A controller and scheduler are automated agents 68

that control the state of the Kubernetes to identify a suitable 69

node for a pod. A configuration script can either be a Kind 70

script or a Helm script [77]. 71

Kind script: Kind scripts contain configurations for kind, 72

which is a specific type of Kubernetes object. Kind scripts 73

are executed using Kubernetes-provided utilities, such as 74

‘kubectl’ [59]. Listing 1 shows an example of a pod specified 75

with a Kind script. This script defines a pod that runs a 76

single container using the image ‘myimage.’ 77

Helm script: Helm is a package manager for Kuber- 78

netes that simplifies configuration management for Kuber- 79

netes [13]. A Helm script is developed using YAML, and a 80

group of Helm scripts is referred to as a Helm chart. In a 81

Helm chart, variables and default configuration values are 82

defined in a script labeled as ‘values.yaml.’ [13] These vari- 83

ables and configuration values are loaded dynamically into 84

scripts called ‘templates’ through template directives [13]. 85

Listing 2 shows an example of a template. 86

3 RQ1: CATEGORIES OF DEFECTS IN KUBER- 87

NETES CONFIGURATION SCRIPTS 88

We provide the methodology and results for RQ1 respec- 89

tively, in Sections 3.1 and 3.2. 90

3.1 Methodology 91

We use the following steps: 92

3.1.1 Identify Defects from OSS projects 93

We follow three steps to identify defects. 94

Step#1 - Mine OSS repositories from GitHub: We iden- 95

tify defects by mining OSS repositories hosted on GitHub, 96

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING iii

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: mypod
5 spec:
6 containers:
7 - name: mycontainer
8 image: myimage
9 ports:

10 - containerPort: 80

Listing 1: An example of a Kind script.

1 # configuration values defined in a Helm script, `values.yaml`
2 replicaCount: 2 --> Configuration value for spec.replicas
3 service:
4 portName: https --> Configuration value for spec.ports.name
5 portHttps: 80 --> Configuration value for spec.ports.port
6 # configuration values used by a Helm template
7 spec:
8 replicas: {{ .Values.replicaCount }} --> Template directive
9 ports:

10 - name: {{ .Values.service.portName }}
11 - port: {{ .Values.service.portHttps }}
12 - protocol: TCP

Listing 2: An example of a Helm script.

which is the most popular code hosting platform [71]. We1

mine repositories using the GHTorrent archive [37] that is2

hosted on Google Big Query. However, as publicly-available3

GitHub repositories are susceptible to quality issues [71],4

we apply the following filtering criteria: Criterion-1: Repos-5

itory must be publicly available and contain the ‘Kuber-6

netes’ label to ensure that the repositories are Kubernetes7

relevant [77]; Criterion-2: At least 10% of the files in the8

repository are YAML files and each file must use Kuber-9

netes objects (e.g., Pod, Service, Deployment, etc) to collect10

repositories that contain sufficient amount of configuration11

scripts for analysis; Criterion-3: The repository is not a copy12

of another repository; and Criterion-4: The repository has at13

least ten contributors. We use a threshold of ten contributors14

to ensure a higher likelihood that the repository represents a15

more collaborative and active project, reducing the chances16

of including repositories used for academic or personal17

projects. Prior research [76] has also used the threshold of18

at least 10 contributors.19

As shown in Table 1, we collect 185 OSS Kubernetes20

repositories from GitHub repositories. We clone the master21

branches of the 185 repositories. We provide attributes of22

the mined 185 repositories in Table 2. In all we collect 44,40123

configuration scripts.24

Step#2 - Mine Commits and Issue Reports from 18525

OSS Kubernetes repositories: We download the 185 OSS26

Kubernetes repositories on March 2024 to conduct our anal-27

ysis. From the downloaded repositories, we mine 417,59828

commits and 140,872 issue reports. To identify commits29

and issue reports that are related to defects, we use the30

following steps: Step-1: We filter issue reports by checking31

if the issue is closed and has a pull request to ensure we32

have sufficient content to derive fix patterns; Step-2: We33

apply a keyword search similar to prior work [76]. We34

use following keywords: ‘bug,’ ‘defect,’ ‘error,’ ‘fault,’ ‘fix,’35

‘flaw,’ ‘incorrect,’ ‘issue,’ and ‘mistake’ to ensure commits36

and issue reports are related to a defect; Step-3: We inspect37

the files modified in each commit and issue report to ensure38

commits and issue reports are related to Kubernetes config-39

uration management; and Step-4: We exclude commits that 40

are duplicates of others. In all, we identify 66 commits and 41

1,941 issue reports that include defect-related keywords. 42

Step#3 - Detect Defects by Applying Qualitative Analysis: 43

We conduct qualitative analysis to identify defects from 44

defect-related commits and issue reports. The rationale is 45

that relying solely on keyword search can result in false pos- 46

itives. To identify defects, we use the IEEE definition [47]: 47

”an imperfection or deficiency in the code that needs to be 48

repaired.” 49

Criteria to Identify Defects - For defect identification, the 50

rater applies the following criteria: (i) problematic code 51

exists in the commit message or the issue report; (ii) prob- 52

lematic code leads to an incorrect or undesired consequence 53

that is explicitly expressed by a practitioner; (iii) the commit 54

message or issue content describes an immediate conse- 55

quence of the defect; and (iv) the problematic code was 56

repaired. By applying these criteria, we identify that 52 of 57

the 66 commits and 681 of the 1,941 issue reports to be 58

related with defects. 59

Defect Count

R
ep

o.
 C

ou
nt

0 20 40 60 80 100
0

10
0

20
0

Fig. 3: Distribution of defects.

Criteria to Identify Configuration Defects - The rater in- 60

spects if any of the following criterion is satisfied: (i) the 61

defect resides in a configuration script; (ii) the defect occurs 62

when provisioning Kubernetes resources, or managing Ku- 63

bernetes resources, or monitoring Kubernetes resources; and 64

(iii) the defect is related to a Kubernetes configuration. Us- 65

ing this criteria, we identify 719 defects. Of these 719 defects 66

52 and 667 are respectively, obtained from 52 commits and 67

681 issue reports. Figure 3 shows the distribution of defects 68

across 185 repositories. We observe 77.8% of the studied 69

repositories include =< 5 defects. 70

3.1.2 Derive Defect Categories 71

We employ a qualitative analysis method known as open 72

coding [81] to derive defect categories. Open coding in- 73

volves recognizing patterns in unstructured text to establish 74

categories [81]. The first and second author individually 75

applies open coding with 52 defects from 52 defect-related 76

commits and 667 defects from 667 defect-related issue re- 77

ports. While applying open coding, each rater applies or- 78

thogonality, i.e., derive the categories so that do not overlap. 79

Each rater examines messages and code changes for each 80

commit, as well as title, description, comment, pull request, 81

and code changes for each issue report. 82

Each rater creates a category with a short definition, which 83

we use to identify and resolve differences in labeling. Dis- 84

agreements occurred as the first and second author respec- 85

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING iv

TABLE 1: Filtering of OSS Repositories

Initial Repository Count 14,747,836
Criterion-1 (Available and relevant) 1,410
Criterion-2 (>= 10% Configuration
scripts)

1,087

Criterion-3 (Not a copy) 1,079
Criterion-4 (Contributors >=10) 185
Final Repository Count 185

TABLE 2: Dataset Attributes

Category Data
Total Repositories 185
Total Commits 417,598
Total Developers 21,559
Kind Scripts 37,147
Helm Scripts 7,254
Total Kubernetes Scripts 44,401
Total Size (LOC) 51,282,124
Total Count of Issue Reports 140,872
Total Count of Stars 398,347
Time Span 06/2014 - 03/2024

tively, identified 20 and 12 categories. Here, 11 categories1

are identified by both raters, whereas 9 are identified by2

the first author, and 1 is identified by the second author.3

The Cohen’s Kappa [23] is 0.67, suggesting ‘substantial’4

agreement [63]. Amongst the 10 disagreements, 3 occurred5

because of naming issues, e.g., ‘conditional operator’ and6

‘conditionals,’ and 7 occurred because of definition overlap,7

e.g., ‘access control’ is a sub-category of ‘security.’ The8

two raters discussed these disagreements but could not9

reach consensus on all cases. Therefore, the last author,10

with extensive experience in qualitative coding and defect11

classification, and who also is not involved in the initial12

coding, served as adjudicator to resolve the remaining13

disagreements. While resolving the disagreements, the last14

author examined the names, definitions, and code snippets15

for the defects of interest. Then, the last author mapped the16

defect to a category that has already been finalized.17

Our defect categories is derived using open coding [81]18

where we merged sub-categories into categories. This merg-19

ing process occurred because of similarities between derived20

subcategories. For example, the subcategory ‘privileged21

ports’ captures defects where containers are configured to22

bind to ports below 1024, while the subcategory ‘access23

control’ refers to defects that inadvertently grant exces-24

sive permissions. Although these defects occur in different25

configuration fields, they both represent security defects.26

Hence, we merged them into the broader ‘security’ cate-27

gory, which unifies defects that compromise confidentiality,28

integrity, or availability.29

3.1.3 Scoping Review30

We compare identified defect categories to those of previ-31

ously studied software systems using a scoping review [9].32

A scoping review is a variant of a systematic literature re-33

view conducted in a reduced scope [9]. Our review includes34

publications related to defect categorization published at35

the International Conference of Software Engineering (ICSE)36

and Foundations of Software Engineering (FSE) conferences37

from 2020 to 2024. We select ICSE and FSE due to their38

reputation in publishing software engineering research. Ad-39

ditionally, we include three defect categorization publica-40

tions [21], [82], [95] and two Kubernetes-specific studies [53],41

[77]. In all, we use 21 publications, of which 9, 7, 1, 1, 1, 142

and 1 are respectively, from ICSE, FSE, TSE, EMSE, ESEM,43

TOSEM, and IWCMC.44

3.2 Answer to RQ145

We answer RQ1 by reporting the defect categories and46

results related to scoping review (Section 3.2.2), results re-47

lated to scoping review (Section 3.2.1), their frequency (Sec- 48

tion 3.2.3). 49

3.2.1 Answer to RQ1: Defect Categories 50

We identify 15 defect categories, which we characterize with 51

examples obtained from our OSS repositories. 52

- {{- if and .Values.certificates.autoGenerated (
not .Values.certificates.certManager.enabled) }}↪→

+ {{- if or (and .Values.certificates.autoGenerated
(not .Values.certificates.certManager.enabled))
(.Values.permissions.operator.restrict.secret) }}

↪→
↪→

apiVersion: rbac.authorization.k8s.io/v1

Listing 3: Example of a conditional-related defect.

I Conditional: This kind of defect manifests when develop- 53

ers use incorrect operators or operands in conditional state- 54

ments, such as if-else blocks. Listing 3 shows an example 55

defect [33] where an improper operand, i.e., ‘and’ is used in 56

an if-else block. Due to this defect, the application fails to 57

startup. 58

II Container Provisioning: This defect category occurs 59

when developers provision containers for pods. There are 60

two sub-categories: (i) Command Line Arguments (CLA): This 61

defect category occurs due to specifying erroneous com- 62

mand line arguments. Arguments can be provided either 63

from command line or using the command or args prop- 64

erty. Listing 4 shows a CLA-related defect [67] where an 65

erroneous argument is provided for command. Due to this 66

defect, the image is unable to be recovered after being 67

deleted. (ii) Resources: This defect occurs because of pro- 68

visioning resources that are unspecified, under-specified, 69

or over-specified. Listing 5 shows a resources-related de- 70

fect [38] where resource limits are under-specified, i.e., 256 71

Mebibytes (Mi) is used instead of 550Mi. This defect causes 72

a hang. 73

III Custom Resource: This defect category occurs when 74

developers incorrectly manage custom resources (CRs) in 75

Kubernetes. CRs are extensions of the Kubernetes API that 76

allow developers to create and manage new kinds of re- 77

sources beyond what Kubernetes offers by default [59]. 78

Listing 6 shows an example defect [49] where an incorrect 79

image tag is configured for the ClusterServiceVersion 80

CR. 81

metadata:
labels:

- control-plane: controller-manager
+ control-plane: argocd-operator

Listing 7: A defect related to entity ref-
erencing.

IV Data Fields: 82

This defect cate- 83

gory occurs when 84

the data fields are 85

improperly han- 86

dled in scripts. We identify five sub-categories: (i) Base64 87

String and Encoding (BSE): This defect occurs due to the 88

misuse of Base64 encoding. Figure 4a shows a BSE-related 89

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING v

-stringData:
- username: "{{.vsphereUsername}}"
- password: "{{.vspherePassword}}"
+data:
+ username: {{.vsphereUsername |

b64enc}}↪→
+ password: {{.vspherePassword |

b64enc}}↪→

a

-node: {{
$sts.node }}↪→

+node: {{
$sts.node |
quote }}

↪→
↪→

b

-path: {{ . }}
-pathType:

ImplementationSpecific↪→
+pathType: Prefix

c

-{{- toYaml
.Values.volumes.keda.
extraVolumeMounts |
nindent 12 }}

↪→
↪→
↪→
+{{- toYaml

.Values.volumes.keda.
extraVolumeMounts |
nindent 10 }}

↪→
↪→
↪→

d

volumeMounts:
- - name: data-{{

.Release.Namespace
}}

↪→
↪→
+ - name: data-{{

.Release.Namespace |
trunc 58 |
trimSuffix "-" }}

↪→
↪→
↪→

e

Fig. 4: Examples of defects related to data fields. Figures 4a, 4b, 4c, 4d, and 4e respectively, presents examples of defects
related to BSE, IDT, IUPT, syntax, and VR.

command:
...

- - longhornio/backing-image-manager:
v2_20210820_patch2↪→

+ - longhornio/backing-image-manager:v2_20221027

Listing 4: Example of a CLA-related defect.

resources:
limits:

- memory: 256Mi
+ memory: 550Mi

Listing 5: Example of a resource-related defect.

kind: ClusterServiceVersion
...

- name: OPERATOR_NAME
- image: quay.io/jaegertracing/

jaeger-operator:v1.29.0↪→
+ image: quay.io/jaegertracing/

jaeger-operator:1.29.0↪→

Listing 6: Example of a CR-related defect.

defect [10] because of not using Base64 encoding with1

‘b64enc.’ (ii) Incorrect Data Types (IDT): This defect occurs be-2

cause of using incorrect data types. Figure 4b shows an IDT-3

related defect [29] that causes a hang. The defect occurred4

because of missing quote, which causes annotations to5

be interpreted as numbers instead of strings. (iii) Incorrect6

URL Path Types (IUPT): This defect occurs due to misuse7

of pathType, an attribute used to route incoming traffic8

to the backend services. Figure 4c shows an IUPT-related9

defect [108] which results in a dashboard failing to load. (iv)10

Syntax: This defect occurs due to syntax errors. Figure 4d11

shows a syntax-related defect [55] where incorrect inden-12

tation is used. (v) Violation of Restrictions (VR): This defect13

occurs due to the failure to adhere to the specific technical14

rules and constraints enforced by Kubernetes on resource15

definitions and configurations. These restrictions include,16

but are not limited to, name length, allowed characters, and17

the correct format of values. Figure 4e shows a VR-related18

defect [41] where a dynamically generated name exceeds the19

maximum length of 63 characters.20

V Entity Referencing: This defect category occurs when21

Kubernetes entities, such as names and labels are incorrectly22

referenced or entities that are referred to do not exist.23

Listing 7 shows an example defect [8] where the incorrect24

label ‘controller-manager’ is provided instead of ‘argocd-25

operator.’26

containers:
- name: main

- image: docker.io/aquasec/trivy:0.34.0
+ image: "{{ .Values.trivy.repository }}:{{

.Values.trivy.tag }}"↪→

Listing 8: A defect related to incorrect Helming.
VI Incorrect Helming: This defect category occurs when27

users hard-code configuration values in templates. Hard- 28

coding configuration values in templates is considered as an 29

anti-pattern in Kubernetes [17]. Listing 8 shows an example 30

defect [4], where the configuration value is hard-coded in a 31

template. Due to this defect, the user-provided image value 32

is never applied. 33

subjects:
- namespace: {{ .Release.Namespace }}
+ namespace: {{ include

"opentelemetry-collector.namespace" . }}↪→

Listing 9: Example of a namespace-related defect.

VII Namespaces: This defect category occurs when an incor- 34

rect namespace is used. Namespaces provide a mechanism 35

for isolating groups of resources within a single Kubernetes 36

cluster by separating different environments [59]. If re- 37

sources are placed in a namespace that is different from the 38

objects that use them, then the referencing objects will not be 39

able to access these resources, leading to application failures. 40

Listing 9 shows an example defect where the namespace is 41

incorrect due to an incorrect template directive. As a result, 42

the deployed application of interest results in a crash. 43

- kind: ClusterRole
- name: argocd-server
- ...

- kind: ClusterRoleBinding
- name: argocd-server
- ...

kustomization.yaml:

resources:
- - argocd-server-clusterrole.yaml
- - argocd-server-clusterrolebinding.yaml
+ - ./application-controller

Listing 10: A defect related to orphanism.

VIII Orphanism: This defect category occurs when either 44

resources in a pod are not properly de-allocated, or when 45

resources are deployed but not referenced by any other 46

resources. Listing 10 shows an example defect [7] where 47

a ClusterRoleBinding object references a non-existent ser- 48

vice account, i.e., ‘argocd-server.’ This defect leads to a 49

resource leak, as the orphaned ClusterRole and Clus- 50

terRoleBinding continue to consume cluster resources 51

unnecessarily. 52

- affinity: {}
+ affinity:
+ nodeAffinity:

Listing 11: A de-
fect related to pod
scheduling.

IX Pod Scheduling: This defect 53

category occurs when develop- 54

ers incorrectly use pod scheduling 55

mechanisms, such as affinity. Affin- 56

ity is a set of rules that assign pods 57

to nodes based on certain criteria, 58

such as node labels or the location 59

of other pods [59]. Listing 11 shows an example defect [61] 60

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING vi

rules:
apiGroups:

- - "*"
+ - ""
+ -

events.k8s.io↪→

a

args:
- --cert-dir=/tmp

- - --secure-port=443
+ -

--secure-port=4443↪→

b

data:
- {{- if eq (typeOf .Values.alertmanager.config) "string" }}
+ {{- if .Values.alertmanager.stringConfig }}
+ alertmanager.yaml: {{ tpl (.Values.alertmanager.stringConfig) |

b64enc | quote }}↪→
+ {{- else if eq (typeOf .Values.alertmanager.config) "string" }}
+ alertmanager.yaml: {{ tpl (.Values.alertmanager.config) | b64enc |

quote }}↪→

c

securityContext:
- runAsNonRoot: true
+ runAsUser: 65534

d

Fig. 5: Examples of security defects. Figures 5a, 5c, 5b, and 5d respectively, presents examples of defects related to AC, PP,
ESD, and SC.

where affinity is missing. This causes a pod to be unexpect-1

edly scheduled on the ‘fargate’ node, leading to resource2

contention between pods.3

- tcpSocket:
+ livenessProbe:
+ httpGet:
+ path: /healthz

Listing 12: Example of a
probing-related defect.

X Probing: This defect category4

that occurs when probing is in-5

correctly handled in scripts. Ku-6

bernetes provides two health7

check probes namely, liveness8

probes and readiness probes to monitor the health status9

of the provisioned containers [59]. Listing 12 shows an10

example defect [6] where the configurations for a liveness11

probe is missing. Due to this defect, the pod could not12

automatically recover from an error status when a failure13

occurred, leading to an outage.14

annotations:
-

"cert-manager.io/inject-ca-from":
kserve/serving-cert

↪→
↪→
+

"cert-manager.io/inject-ca-from":
kubeflow/serving-cert

↪→
↪→

Listing 13: A defect related to prop-
erty annotation.

XI Property15

Annotation: This16

defect category17

occurs when18

developers use19

user-defined20

annotations21

incorrectly.22

Annotations are used to attach arbitrary non-identifying23

metadata to objects [59]. Unlike labels, which are used to24

organize and select subsets of objects, annotations are not25

used to identify and select objects. Instead, they are used to26

store additional information that may be used by external27

libraries. Listing 13 shows an example defect [56] because of28

incorrectly using the kserve/serving-cert annotation.29

XII Security: This category includes defects that violate the30

principle of confidentiality, integrity, or availability. The four31

sub-categories are: (i) Access Control (AC): Access control32

is defined as the technique that regulates who or what33

can view or use resources in a computing environment.34

If access control is improperly configured, it can lead to35

creation of over-privileged and under-privileged entities.36

Over-privileged entities, such as users or processes may per-37

form unauthorized actions, access sensitive data, or disrupt38

the operation of the system [31]. Under-privileged entities39

can lead to availability issues, such as not being able to40

access needed cluster data. Figure 5a shows an AC-related41

defect [62] that occurred because of using ‘*’ that allows42

unauthorized users to gain access to sensitive data. (ii)43

Privileged Ports (PP): This defect occurs due to the use of44

a privileged port number. Using privileged ports that are45

typically below 1024 requires higher privileges, which can46

increase security risks, such as privilege escalation, if not47

properly managed [5]. Privilege escalation can expose the 48

system to attacks, as they may require running applications 49

or containers with more access than necessary allowing a 50

malicious user to gain unauthorized control [74]. Figure 5b 51

shows a PP-related defect [60] where a privileged port 52

number 433 is used. (iii) Exposure of Sensitive Data (ESD): 53

This defect occurs due to exposure of sensitive data in 54

scripts. Figure 5c shows an ESD-related defect [73] where 55

a plain string can be mistakenly passed to the Secret 56

entity. (iv) Security Context (SC): This defect that occurs due 57

to privileged securityContext or a missing securi- 58

tyContext. A securityContext is a Kubernetes entity 59

that determines the user IDs, group IDs, and whether the 60

container runs as a privileged user. An improperly config- 61

ured securityContext can result in containers running 62

with unnecessary privileges, increasing the risk of privilege 63

escalation, unauthorized access, and potential compromise 64

of the system [66]. Figure 5d shows a SC-related defect [65] 65

where ’runAsUser’ is missing for securityContext, 66

which causes the container running with root privileges. 67

Due to this defect, malicious users could gain unauthorized 68

access. 69

accessModes:
- - ReadWriteOnce
+ - {{ .Values.accessMode }}

values.yaml:

+ accessMode: ReadWriteMany

Listing 14: A defect related to
unsatisfied dependency.

XIII Unsatisfied Depen- 70

dency: This defect cate- 71

gory occurs when exe- 72

cution of scripts are de- 73

pendent on one or mul- 74

tiple prerequisites, such 75

as network-related depen- 76

dencies and container im- 77

ages. Listing 14 shows an example defect [48] where scaling 78

up pods on different nodes fails due to the missing precon- 79

dition ReadWriteMany. The ReadWriteMany access mode 80

in the persistent volume claim configuration allows multiple 81

nodes to read and write simultaneously, which is a crucial 82

precondition for scaling up pods across different nodes. 83

- apiVersion:
extensions/v1beta1}↪→

+ apiVersion: apps/v1
kind: Deployment

Listing 15: A defect related to ver-
sion incompatibility.

XIV Version Incom- 84

patibility: This defect 85

category occurs when 86

developers use APIs 87

or Kubernetes objects 88

that are no longer sup- 89

ported by Kubernetes and its API. Listing 15 shows an 90

example defect 1 where a deprecated API version ‘exten- 91

sions/v1beta1’ is used. Due to this defect, the configu- 92

1. https://github.com/SeldonIO/seldon-core/issues/3677

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING vii

TABLE 3: A Comparison Between Identified Defect Categories and Defect Categories for Previously-Studied Software
Systems

Previously-studied Software
System Conditio-

nal

Container
Provi-

sioning

Custom
Re-

source

Data
Fields

Entity
Refer-
encing

Incorrect
Helm-

ing

NamespacesOrphanism Pod
Schedul-

ing

Probing Property
Annota-

tion

Security Unsatisfied
Depen-
dency

Version
Incom-
patibil-

ity

Volume
Mount-

ing

Android Applications [98] ✓ – – ✓ – – – – – – – – – – –
Autopilot Software [97] ✓ – – ✓ – – – – – – – – – – –

Deep Learning Compiler [88] ✓ – – ✓ – – – – – – – – – ✓ –
Deep Learning Deployment

(Mobile) [19]
– ✓ – ✓ – – – – – – – – ✓ – –

Deep Learning Stack [44] – – – – – – – – – – – – ✓ ✓ –
Federated Learning Systems [32] ✓ ✓ – ✓ – – – – – – – ✓ ✓ ✓ –

IBM Proprietary Software [21] ✓ – – ✓ – – – – – – – – – – –
IaC State [42] ✓ - – ✓ – – – – – – – ✓ ✓ – –

IaC Defect [76] ✓ ✓ – ✓ – – – – – – – ✓ ✓ – –
Linux Kernel [95] ✓ – – – ✓ – – – – – – ✓ – – –

NASA Software Projects [82] ✓ – – ✓ – – – – – – – – – – –
Machine Learning Model [40] – – – ✓ – – – – – – – – – – –

IoT [68] – – – – – – – – – – – – ✓ ✓ –
Database Systems [26] – – – – - – – – – – – - ✓ – –

Web Server Systems [100] – – – – ✓ – – – – – – ✓ ✓ – –
Multilingual Python Projects [104] ✓ – – – – – – – – – – ✓ – – –

WeChat [99] ✓ – – ✓ – – – – – – – – – ✓ –
Static Analyzers [43] ✓ – – – – – – – – – – – – – –

SLIKUBE [77] – ✓ – – – – – – – – – ✓ – – –
Kubernetes Security

Deployments [53]
– ✓ – – – – – – – ✓ – ✓ – – –

Faults in Deep Learning [45] - – – - – – – – – – – – – ✓ –

ration script fails to be executed and leads to a crash.1

- mountPath: /datalog
- name: zk-data
+ name: zk-datalog

Listing 16: A defect related
to volume mounting.

XV Volume Mounting: This2

defect category occurs when3

developers incorrectly mount4

storage for applications that5

are managed by Kubernetes.6

Listing 16 shows an example defect 2 where the ‘zk-data’7

volume is incorrectly mounted instead of ‘zk-datalog.’ This8

defect resulted in a crash.9

3.2.2 Comparison with Defect Categories for Previously-10

studied Software Systems11

In Table 3 we report the defect categories that have appeared12

for other software systems. In the table, a ‘✓’ indicates13

that the defect category is reported in previously-studied14

software systems, while a ‘–’ denotes that the category15

is not reported. As highlighted in green, 7 are unique to16

Kubernetes: custom resource, incorrect Helming, names-17

paces, orphanism, pod scheduling, property annotation, and18

volume mounting. While the previous section introduces19

and defines each defect category, this comparison explains20

why these seven categories are specific to Kubernetes and21

absent from other software systems. In particular, these22

categories focus solely on defects in YAML-based config-23

uration files, which do not overlap with prior work on Ku-24

bernetes operators and therefore are not renamed variants25

of operator-based defects. Unlike, operators that are custom26

controllers [59], configuration scripts are used to configure27

built-in Kubernetes entities, such as pods, custom resources,28

and namespaces. Custom resources in Kubernetes are used29

to extend the Kubernetes API by allowing developers to de-30

fine and manage their own custom resource types through31

Custom Resource Definitions (CRDs). Incorrect Helming is32

unique to Kubernetes as it stems from Helm-specific tem-33

plate misuse, a defect type not applicable to other software34

systems. Namespaces in Kubernetes are used to isolating35

resources by providing logical separation within a cluster.36

2. https://github.com/apache/openwhisk-deploy-
kube/commit/720abadb5249eb96d5f27afd1cc21387ab85652d

Orphanism is unique to pods, where resources of pods, 37

such as CPU and memory are left unused or unlinked due 38

to improper cleanup or misconfiguration. Pod scheduling 39

is unique to Kubernetes pods, which is conducted when 40

the scheduler assigns pods to appropriate nodes based 41

on resource availability, constraints, and policies. Property 42

annotation is performed for Kubernetes resources to provide 43

metadata or configuration details, such as specifying labels, 44

or custom behaviors. Volume mounting is applicable for 45

Kubernetes pods, where the volume tag is used to define 46

the storage volumes and attach them to containers. 47

Our unique Kubernetes-specific categories, such as incor- 48

rect Helming and orphanism, are valuable because they 49

capture defects unique to YAML-based configurations that 50

prior publications have not addressed. The identified defect 51

categories provide a foundation for tool builders to design 52

targeted analysis techniques and for practitioners to more 53

effectively detect and fix Kubernetes configuration defects. 54

3.2.3 Results for RQ1: Frequency 55

We present the count of defects for each defect category in 56

Table 4, organized alphabetically by category names. The 57

most frequently occurring category is entity referencing. ‘-’ 58

denotes categories without sub-categories. ‘Category Total’ 59

represents the overall count of defects for categories with 60

sub-categories. The frequency distribution shows that cer- 61

tain categories are more frequent than others. For example 62

entity referencing and unsatisfied dependency are more 63

frequent than orphanism or property annotation. These 64

frequently occurring categories involve names, labels, and 65

references to other resources, which are essential for iden- 66

tifying objects and linking related resources, such as pods 67

to services. References that do not match expected names 68

or labels can break these connections, explaining the high 69

frequency of defects in entity referencing and unsatisfied 70

dependency. In contrast, orphanism arises only when re- 71

sources in a pod are not properly de-allocated or remain 72

unreferenced. Because orphaned resources typically impact 73

performance rather than core functionality, and a small 74

number of orphaned resources often has limited observable 75

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING viii
TABLE 4: Answer to RQ1: Frequency of Defect Categories.

Category Sub-category Count
Conditional - 40

Container Provisioning Command Line Arguments 43
Resources 9

——————— —
Category Total 52

Custom Resource - 46
Data Fields Base64 String and Encoding 2

Incorrect Data Types 19
Incorrect URL Path Types 1

Syntax 35
Violation of Restrictions 30

——————— —
Category Total 87

Entity Referencing - 125
Incorrect Helming - 13

Namespaces - 15
Orphanism - 10

Pod Scheduling - 12
Probing - 22

Property Annotation - 12
Security Access Control 76

Exposure of Sensitive Data 4
Privileged Ports 1
Security Context 11
——————— —
Category Total 92

Unsatisfied Dependency - 105
Version Incompatibility - 58

Volume Mounting - 30

impact, such defects are reported less frequently. Property1

annotations are optional metadata and are configured less2

frequently than names and labels, which leads to fewer3

opportunities for defects to occur. Overall, this distribution4

indicates that practitioners encounter difficulties with man-5

aging inter-resource references, rather than with individual6

resource definitions.7

Answer to RQ1: We identify 15 defect categories, of
which 7 have not been reported for previously-studied
software systems: custom resource, incorrect Helming,
namespaces, orphanism, pod scheduling, property anno-
tation, and volume mounting. The most frequent category
is entity referencing.

8

4 RQ2: CONSEQUENCES AND FIX PATTERNS9

We provide the methodology and results for RQ2 respec-10

tively, in Sections 4.1 and 4.2.11

4.1 Methodology12

In this section, we describe the methodology on how we13

derive the consequences and fix patterns.14

4.1.1 Deriving Consequences15

We analyze commit messages and content in issue reports16

for the identified 719 defects to determine the consequences17

using open coding [81]. The first and last author conduct18

open coding separately. Each rater applies the following19

steps: (i) separate commits/issues labeled as defects iden-20

tified from Section 3.1.2; (ii) read text in commit messages21

and issue report titles/body; (iii) separate text that expresses22

consequences; and (iv) categorize consequences based on23

commonality, e.g., two issue reports 3 express an outage- 24

related consequence. 25

Initially, the first and last author respectively, identify 17 and 26

12 consequences. The Cohen’s Kappa [23] is 0.53, suggesting 27

a ‘moderate’ agreement [63]. The disagreement results from 28

the last author’s opinion of finding 5 consequences that 29

are synonymous with consequences identified by the first 30

author. In order to resolve the disagreements, we use a rater 31

who is not the author on the paper for rater verification. 32

The voluntary rater uses his judgment to resolve the dis- 33

agreements. This rater is a third-year PhD student in the 34

department. Each identified defect category from Section 3.2 35

maps to one of the 12 consequences. 36

4.1.2 Deriving Fix Patterns 37

We apply a qualitative analysis technique called open cod- 38

ing [81] similar to prior research [52], [115]. The first and 39

last author individually apply the following steps: (i) sep- 40

arate issues labeled as defects from Section 3.1 that have 41

code changes; (ii) read the code that was changed for each 42

defect; (iii) identify commonalities in the changes and create 43

groups based on commonalities; and (iv) merge groups into 44

fix pattern categories. Each rater uses messages and code 45

changes from commits as well as from issue reports to apply 46

the above-mentioned steps. 47

Upon applying open coding, the first and last author respec- 48

tively, identify 12 and 8 fix pattern categories. The authors 49

disagree on 3 categories. Upon discussion, the 8 categories 50

identified by both raters and one category identified by 51

the first author that was not identified by the last author 52

were added. The Cohen’s Kappa [23] is 0.81, suggesting a 53

‘substantial’ agreement [63]. 54

4.2 Answer to RQ2 55

We provide answers to RQ2 in this section. 56

4.2.1 Answer to RQ2: Consequences 57

We identify 12 consequences, definitions of which are pro- 58

vided in Table 5. A mapping between the identified defect 59

categories and the consequences is provided in Table 6. 60

We observe the most frequently occurring consequence to 61

be incorrect operations (InOp). We observe 52 defects to 62

be related to configuration inexecutability that does not 63

lead to crashes and hangs but keep the Kubernetes cluster 64

running with incorrect configurations. These consequences 65

show how serious Kubernetes configuration defects are and 66

highlight the importance of our empirical study. 67

4.2.2 Results for RQ2: Fix Patterns 68

We identify 9 fix patterns, definitions of which are provided 69

in Table 7. A mapping between the identified defect cate- 70

gories and the fix patterns is provided in Table 8. The most 71

frequently occurring fix pattern to be configuration value 72

changes (CVC). 73

3. https://github.com/argoproj/argo-cd/issues/10249,
https://github.com/Azure/application-gateway-kubernetes-
ingress/issues/67

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ix

TABLE 5: Results for RQ2: Consequences and their defini-
tions.

Consequence Definition
Compiler Warning (CW) The consequence of obtaining warning

messages from the compilation engine.
Configuration
Inexecutability (CI)

The consequence of running the Ku-
bernetes cluster with incorrect config-
urations. In this case, configurations
specified in scripts are not executed or
are overridden.

Crash The consequence of a Kubernetes op-
eration being terminated abruptly.

Diagnose Inability (DI) The consequence of not being able to
diagnose failures or crashes.

Exposure of Unautho-
rized Data (EUD)

The consequence when unauthorized
users get access to data.

Hang The consequence when an operation is
unresponsive.

Incorrect Artifact Gener-
ation (IAG)

The consequence of generating an arti-
fact incorrectly because of a defect.

Incorrect Operations
(InOp)

The consequence when Kubernetes-
related operations are executed incor-
rectly.

Incorrect Rendering (IR) The consequence of generating an
incorrect display for the Kubernetes
dashboard.

Outage The consequence when a Kubernetes
object is unavailable when requested
by users.

Performance The consequence of incurring unex-
pected usage of CPU and memory.

Unpredictable
Responses (UR)

The consequence of providing unpre-
dictable responses to the user, such
as conducting unpredictable routing
of traffic and obtaining unpredictable
responses from pods.

Answer to RQ2: We identify 12 consequences, with
incorrect operations being the most common. We observe
52 defects mapped to configuration inexecutability, where
clusters continue running with incorrect configurations
but without crashing. We also identify 9 fix patterns, with
configuration value changes being the most frequent.

1

5 RQ3: EVALUATION OF STATIC ANALYSIS TOOLS2

FOR DETECTING DEFECTS3

We organize this section by answering two sub-questions:4

• RQ3.a: What categories of Kubernetes-related defects are5

supported by static analysis tools?6

• RQ3.b: How can we detect defects that are not supported7

by existing static analysis tools?8

We evaluate static analysis tools in our paper. We do not9

evaluate dynamic analysis tools, such as ‘Kube-hunter’ 4
10

and ‘BotKube’ 5 as these tools rely on logs that are generated11

from a Kubernetes cluster at runtime. Therefore, evaluation12

of these dynamic analysis tools require execution of con-13

figuration scripts, which in turn is dependent on correct14

inference of computing environments [69]. Setting up these15

environments correctly require adequate installation of all16

4. https://github.com/aquasecurity/kube-hunter
5. https://botkube.io/

artifacts specified as dependencies for each of the 185 reposi- 17

tories, which makes the evaluation of dynamic analysis tools 18

unfeasible. 19

In order to conduct evaluation, we use the curated dataset 20

described in Section 3.1. This dataset is informed by: (i) real- 21

worlds defects confirmed by practitioners; and (ii) manual 22

verification by the raters. An alert reported by a tool that 23

does not exist in the dataset is a false positive. Any defect 24

included in the dataset but missed by the tool is a false 25

negative. Our approach is consistent with prior research [64] 26

that conducted tool evaluation using curated datasets. 27

5.1 RQ3.a: Defect Categories Supported by Static Anal- 28

ysis Tools 29

5.1.1 Methodology 30

We use the following steps to answer RQ3.a: 31

5.1.1.1 Selection of Static Analysis Tools: We start the se- 32

lection process using the Google search engine in incog- 33

nito mode with the search string ‘defect detection tools 34

for kubernetes.’ From the collected top 100 search results, 35

we identify 100 tools for Kubernetes. Next, we apply the 36

following criteria: Criterion-1: The tool must be publicly 37

available for use. Criterion-2: The tool must be able to detect 38

defects using static analysis. The first author of the paper 39

read the documentation of each tool to determine if the 40

tool can detect defects in configuration scripts. Criterion-3: 41

The tool must support execution through the command line 42

interface, allowing for automated execution. Criterion-4: The 43

tool must be capable of detecting at least one of the 15 identi- 44

fied defect categories. This ensures that each tool contributes 45

to the overall coverage of defect detection. The first author 46

reads the documentation of each tool to apply this criterion. 47

By applying Criterion-1, 2, and 3, we respectively, identify 48

23, 20, and 8 tools. From our application of the four criteria 49

we identify eight tools. Attributes of these tools are available 50

in Table 9. Each of the 8 tools was applied on 2,260 scripts 51

using the command line. For example, ‘Kubeconform’ was 52

executed using ‘kubeconform < file_path >.’ The process 53

took 9.75 hours in total, averaging 1.2 hours per tool. 54

As this tool selection process is subjective, we allocate an- 55

other rater during the revision of the paper. The other rater 56

is the last author of the paper who apply the same steps as 57

the second author where they read the documentation and 58

source code of each tool. Upon completion of the process, 59

we observe a Cohen’s Kappa [23] of 1.0 indicating ‘Perfect’ 60

agreement [63]. 61

5.1.1.2 Evaluation of Static Analysis Tools: We use two eval- 62

uation activities: 63

Activity-1: Evaluation based on support: For this evalua- 64

tion, we conduct a mapping between each identified defect 65

category to a detection rule used by each of the eight tools. 66

The first and second authors independently apply closed 67

coding [81], where they read the documentation and source 68

code of each tool to perform this mapping. A mapping exists 69

if a rule matches the definition of a defect category. Upon 70

completion of the closed coding process, the Cohen’s Kappa 71

is 0.95 [23], indicating an ‘almost perfect’ agreement [63]. 72

Disagreements arose for 10 rules because one of the raters 73

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING x

TABLE 6: Answer to RQ2: Frequency of consequences. ’-’ means zero defects map to that consequence.

Defect Category CW CI Crash DI EUD Hang IAG InOp IR Outage Performance UR

Conditional - 9 13 - - 1 9 1 - 6 - 1
Container Provisioning - 7 4 1 - 2 1 8 - 24 4 1
Custom Resource - 3 13 6 - 1 2 6 - 13 2 -
Data Fields 1 3 57 - - 3 - 6 - 15 2 -
Entity Referencing - 19 34 5 - 1 2 25 2 26 7 4
Incorrect Helming - 8 1 - - - - - - 3 - 1
Namespaces - - 1 - - - - 11 - 3 - -
Orphanism - - 1 - - - - 2 - - 7 -
Pod Scheduling - 1 1 - - - - 3 - 4 3 -
Probing - 1 3 - - - - - - 12 2 4
Property Annotation - - 2 2 - 1 - 3 - 3 1 -
Security 1 - 2 4 9 1 - 63 - 12 - -
Unsatisfied Dependency - 1 6 7 - 6 - 46 - 29 7 3
Version Incompatibility 7 - 17 2 - 1 1 13 - 15 - 2
Volume Mounting 1 - 6 2 - 1 - 7 - 13 - -

Total 10 52 161 29 9 18 15 194 2 178 35 16

TABLE 7: Answer to RQ2: Fix patterns, their definitions, and examples.

Fix Pattern Definition Example Code Snippet
Adding Conditional
Statements (ACS)

Adding missing or incorrect conditional state-
ments in templates.

- {{- if .Values.extraVolumeTags }}
+ {{- if or .Values.controller.extraVolumeTags

.Values.extraVolumeTags }}↪→

Configuration Value
Changes (CVC)

Changing configuration values to correct or up-
dated values.

ports:
- - port: 443
+ - port: 8443

Directive Fix (DF) Fixing a template directive to correctly populate
configuration.

- value: {{ .Values.checkReaper.maxPodsThreshold
}}↪→

+ value: {{ .Values.checkReaper.maxPodsThreshold
| toString }}↪→

Environment Variable
Fix (EVF)

Changing environment variables used at con-
tainer runtime.

env:
- - name: CONSUL_HTTP_TOKEN
+ - name: CONSUL_ACL_TOKEN

Object Modification
(OM)

Adding or deleting Kubernetes objects. + apiVersion: rbac.authorization.k8s.io/v1
+ kind: ClusterRoleBinding

Property Modification
(PM)

Adding or deleting properties of a Kubernetes
object.

readinessProbe:
+ httpGet:
+ path: /healthz
+ port: 8082
- tcpSocket:
- port: 8082

Relocation Relocating objects, paths, or properties to correct
places.

- mountPath: /usr/bin
+ mountPath: /usr/local/mount-from-host/bin

Rule Fix (RF) Fixing rules for access control policies. rules:
- resources: ["replicasets"]
+ resources: ["replicasets", "daemonsets",

"deployments", "statefulsets"]↪→

Syntax Fix (SF) Correcting YAML syntax errors. labels:
- cluster.x-k8s.io/aggregate-to-manager: true
+ cluster.x-k8s.io/aggregate-to-manager: "true"

was less familiar with specific Kubernetes configuration1

concepts. For example, a rule for unsafe sysctls should2

have been mapped to the ‘security’ category, but because3

of lack of familiarity it was not mapped by the rater. All4

disagreements are discussed and resolved collaboratively.5

Activity-2: Evaluation based on detection accuracy: Using6

precision and recall, we compute the detection accuracy7

of the generated alerts, i.e., the detection results obtained8

from each tool. Precision is calculated as TP
TP+FP . Recall is9

calculated as TP
TP+FN . Here, TP corresponds to the number10

of alerts that are true positives, i.e., actual defects, FP11

corresponds to the number of false positive alerts, and FN12

corresponds to the number of missed actual defects. We13

determine an alert to be a TP if the alert correctly identifies a14

defect for the same category, same configuration script, same15

location, and same coding pattern for the defect of interest.16

We determine an alert to be a FP if the alert incorrectly17

identifies a defect belonging to an incorrect category, or18

incorrect script, or incorrect location, or for the incorrect19

coding pattern. We determine FN for a defect, if a tool does 20

not report an alert for it. In order to determine TP , FP , 21

and FN we use the dataset that we construct for answering 22

RQ1. We do not include any defects that is not present in 23

our dataset used for categorization. We repeat the process 24

for calculating TP , FP , and FN for all defect categories. 25

Activity-3: Investigating Tools’ Capabilities Beyond Our 26

Defect Taxonomy: While the studied tools may not accu- 27

rately detect our identified categories, they can still be useful 28

for detecting coding patterns related to the validation of 29

configuration scripts. We investigate this aspect as part of 30

this activity using the following steps: 31

1) First, we apply the tools on a set of 2,260 configuration 32

scripts and identify the categories of coding patterns that 33

can be helpful for validation of scripts but not included 34

in our taxonomy. Here, we examine the rules from each 35

tool to determine whether they match the definitions of 36

our taxonomy categories. Rules that do not match are 37

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xi

TABLE 8: Answer to RQ2: Frequency of fix patterns. ’-’ means no defects map to the fix pattern.

Defect Category ACS CVC DF EVF OM PM Relocation RF SF

Conditional 13 - 27 - - - - - -
Container Provisioning 1 32 3 9 1 4 1 1 -
Custom Resource 3 9 3 - 2 29 - - -
Data Fields 4 8 23 1 4 12 1 - 34
Entity Referencing 10 58 41 2 - 7 4 3 -
Incorrect Helming - - 9 1 - 3 - - -
Namespaces - 2 3 1 1 6 - 2 -
Orphanism - 3 1 - 5 - - 1 -
Pod Scheduling 2 - 1 - - 9 - - -
Probing 1 6 - - - 15 - - -
Property Annotation 2 6 1 - - 3 - - -
Security 1 4 3 - 2 11 - 71 -
Unsatisfied Dependency 11 11 2 5 16 25 2 33 -
Version Incompatibility 14 32 5 - 1 4 2 - -
Volume Mounting 4 3 1 - - 20 2 - -

Total 66 174 123 19 32 148 12 111 34

TABLE 9: Descriptions and Attributes of Selected Static Analysis Tools

Tool Description Source Output Format Size(LOC) Technique
Checkov A tool that can scan configurations used in cloud

infrastructure. It supports over 1,000 checks related
to security and compliance.

GitHub [18] SARIF, Text, JSON,
XML, CSV,
Markdown

695,709 Policy-as-code
[14]

Datree A tool designed to secure Kubernetes workloads.
It focuses on workload security, resource manage-
ment, and best practices.

GitHub [28] SARIF, JSON,
XML, Text

31,193 Rule-based
analysis [101]

Kube-Score A tool designed to analyze Kubernetes object def-
initions. It investigates Kubernetes resources and
provides recommendations to enhance the resilience
of applications.

GitHub [109] SARIF, JSON,
JUnit, Text, CI

17,054 Rule-based
analysis [101]

KubeLinter A tool developed that identifies security defects and
deviations from recommended practices. KubeLin-
ter is perceived as the most popular static security
analysis tool.

GitHub [92] SARIF, JSON, Text 24,295 Rule-based
analysis [101]

Kubesec A security-focused static analysis tool that identi-
fies potential security weaknesses in configuration
scripts. It assigns a security score to Kubernetes
resources based on their configuration.

GitHub [24] JSON, YAML, Text 9,919 Rule-based
analysis [101]

Kube-conform A tool that validates scripts with OpenAPI and
JSON schemas, ensuring they comply with expected
standards.

GitHub [106] JSON, XML, Text,
TAP

639,910 Schema
validation [30]

SLI-KUBE A tool developed by researchers that identifies 11
categories of security weaknesses in scripts. It can
be executed from the command line and is available
as a Docker image.

TOSEM’23 [77] SARIF, CSV 10,987 Rule-based
analysis [101]

Yamlint A tool that checks for syntax validity and adherence
to best practices, including key repetition and syntax
issues, such as trailing spaces.

GitHub [1] Text 11,535 Pattern-based
Analysis [34]

classified into new categories that are not included in1

our taxonomy. The classification process is performed2

independently by the first and last author using closed3

coding [81], where both raters read the documentation4

and source code of the tools to understand the intent of5

each unmapped rule. A rule is classified into a category6

if the rule matches the definition of one of the categories7

that have not been included in our taxonomy. Upon8

completion, the Cohen’s Kappa is 0.91 [23], indicating an9

‘almost perfect’ agreement [63]. The two raters disagree10

on 10 classifications, which are resolved by consensus.11

2) Second, we run the eight tools on a random sample of12

329 configuration scripts, a sample size that corresponds13

to a 95% confidence level. We selected the 95% con-14

fidence level because it is a commonly-used standard15

in empirical software engineering and statistical analy-16

sis [86], [114]. Finally, we count the frequency of alerts17

generated by the unmapped rules and report the number18

of detected defects in each category that have not been 19

included in our taxonomy across the eight tools. 20

5.1.2 Results for RQ3.a 21

Our results are: 22

5.1.2.1 Results Related to Support: We find eight defect 23

categories to be supported by at least one tool. The defect 24

categories for which we observe no support are: conditional, 25

CR, incorrect Helming, orphanism, property annotation, un- 26

satisfied dependency, and volume mounting. A full break- 27

down is available in Table 10, which is organized alphabeti- 28

cally by category names. In the table, a ‘✓’ indicates that the 29

tool can detect the category, while a ’-’ denotes that the tool 30

cannot detect the category. 31

5.1.2.2 Results related to Detection Accuracy: We observe 32

the average precision and recall to be ≤ 0.28 for all eight 33

tools. The highest precision is observed for Datree and 34

Kubesec respectively, for syntax and incorrect data types 35

(IDT), which are sub-categories of data fields. The highest 36

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xii

TABLE 10: Answer to RQ3.a: Support for Detecting Defects in Kubernetes Configuration Management.

Category Sub-category Checkov Datree Kube-
conform

Kube-
Linter

Kube-
Score Kubesec SLI-

KUBE
Yaml-

lint
Conditional N/A - - - - - - - -
Container Provisioning CLA - - - - - - - -

Resources ✓ ✓ - ✓ ✓ ✓ ✓ -
Custom Resource N/A - - - - - - - -
Data Fields BSE - - - - - - - -

IDT - ✓ ✓ - - ✓ - -
IUPT - - - - - - - -
Syntax - - - - - - - ✓
VR - ✓ ✓ ✓ ✓ ✓ - -

Entity Referencing N/A ✓ ✓ - ✓ ✓ ✓ - -
Incorrect Helming N/A - - - - - - - -
Namespaces N/A ✓ ✓ - ✓ - - ✓ -
Orphanism N/A - - - - - - - -
Pod Scheduling N/A - ✓ - ✓ ✓ - - -
Probing N/A ✓ ✓ - ✓ ✓ - - -
Property Annotation N/A - - - - - - - -
Security AC ✓ ✓ - ✓ - ✓ - -

ESD ✓ ✓ - ✓ - - ✓ -
PP - - - - - - - -
SC ✓ ✓ - ✓ ✓ ✓ ✓ -

Unsatisfied Dependency N/A - - - - - - - -
Version Incompatibility N/A - ✓ - ✓ ✓ - - -
Volume Mounting N/A - - - - - - - -

recall is observed for Yamllint in the case of detecting1

defects-related to syntax. The worst performing tool is SLI-2

KUBE as its precision and recall are 0.0 for all categories.3

Data related to all tools and defect categories are available4

in Table 11. The ‘#’ column represents the count of defects5

for each category and sub-category.6
5.1.2.3 Results Related to Tools’ Capabilities Beyond Our7

Defect Taxonomy: We identify 6 categories of coding pat-8

terns that are related to validation identified by the stud-9

ied tools but not included in our taxonomy: violations of10

best practice, built-in features, control plane configuration,11

broken isolation, missing availability safeguards, and tool12

setup. The results are summarized in Table 12. The ‘#’13

column reports the count of alerts that we classified into14

each category. A ‘-’ indicates that the tool does not contain15

rules for that category.16

The most frequent category that has not been included17

in our taxonomy is violations of best practice. The high18

frequency of alerts arises because of certain tools’ emphasis19

on detecting violations of best practice. One such example20

is Checkov. For example, Checkov includes rule CKV2_-21

K8S_6, ‘minimize the admission of pods which lack an22

associated NetworkPolicy,’ which represents a hardening23

recommendation rather than a configuration defect directly24

observed in our dataset. Missing availability safeguards and25

broken isolation are the next most frequent categories, with26

alerts reported by KubeScore, Checkov, and KubeLinter.27

Kubeconform and Yamllint do not provide rules that map28

to any categories that have been included in our taxonomy.29

In contrast, Checkov and Datree together provide coverage30

for every category not included in our taxonomy. This high-31

lights that while some tools specialize in schema or syntax32

validation, others emphasize on best practice enforcement.33

Overall, these results show while the tools may not detect34

all defects in our dataset accurately, they can be for practi-35

tioners with respect to detecting violations of best practice,36

detecting missing safeguards for availability, and isolation37

issues that are important for Kubernetes deployments.38

Answer to RQ3.a: 8 categories are supported by at least
one tool, while 7 have no support: conditional, custom
resource, incorrect Helming, orphanism, property anno-
tation, unsatisfied dependency, and volume mounting.
Average precision and recall are ≤ 0.28 across all tools.

39

5.2 RQ3.b: Defect Detection with ConShifu 40

We provide the methodology and results for RQ3.b respec- 41

tively, in Sections 5.2.1 and 5.2.2. 42

5.2.1 Methodology 43

Answers to RQ3.a show that there are seven categories of 44

defects that are not covered by any tool. Of these seven 45

categories, incorrect Helming and orphanism can be de- 46

tected using static analysis. Detection of these two categories 47

of defects is important as these defects can cause crashes 48

and outages, as shown in Table 6. We hypothesize that by 49

leveraging coding patterns from existing defects related to 50

these two categories, we can develop a linter for defect 51

detection. Accordingly, we construct ‘ConShifu’ 6 using the 52

following steps: 53

Step#1 - Parsing: ConShifu takes one or multiple config- 54

uration scripts as input. Each script is parsed into key- 55

value pairs where the hierarchies of keys are preserved. 56

ConShifu is capable of analyzing Kind and Helm scripts. 57

Upon completion of parsing, ConShifu stores the output in 58

the forms of key-value pairs in JSON files. 59

Step#2 - Rule Matching: After parsing is complete, 60

ConShifu applies rule matching to identify defects 61

similar to existing static analysis tools [79]. The rules 62

are listed in Table 13. String patterns needed to 63

implement ‘isKind’ is shown in the ‘String Pattern’ 64

column. For rule derivation, we identify commonalities 65

amongst coding patterns that map to existing defects 66

reported in Section 3.1. For example, the coding patterns 67

6. ‘Shifu’ (师傅) is a Chinese word, which means ‘master’

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xiii

TABLE 11: Detection accuracy of eight tools. ’-’ means a precision (P) or recall (R) of 0.0.

Category Sub-
category

Checkov Datree Kube-
conform

KubeLinter Kube-
Score

Kubesec SLIKUBE Yamllint

P R P R P R P R P R P R P R P R
Container Provisioning Resources 9 0.01 0.11 - - - - 0.01 0.12 0.002 0.05 0.02 0.27 - - - -

Data Fields IDT 19 - - 0.02 0.03 0.67 0.03 - - - - 1.00 0.03 - - - -
Syntax 35 - - 1.00 0.01 - - - - - - - - - - 0.001 0.50
VR 30 - - 0.24 0.09 0.24 0.07 - - 0.24 0.07 0.28 0.07 - - - -

Entity Referencing N/A 125 0.002 0.003 - - - - 0.01 0.01 0.03 0.01 0.01 0.01 - - - -
Namespaces N/A 15 0.01 0.14 - - - - - - - - - - - - - -

Probing N/A 22 0.06 0.20 0.03 0.06 - - - - 0.06 0.16 - - - - - -
Security AC 76 0.02 0.02 - - - - - - - - - - - - - -

ESD 4 0.002 0.17 - - - - - - - - - - - - - -
SC 11 0.01 0.20 - - - - - - 0.01 0.13 0.02 0.39 - - - -

Version Incompatibility N/A 58 - - - - - - 0.04 0.02 0.08 0.01 - - - - - -
Avg. 404 0.01 0.01 0.02 0.01 0.28 0.004 0.01 0.01 0.02 0.01 0.02 0.01 - - 0.001 0.001

TABLE 12: Classification of unmapped rules and their counts across 8 tools.

Category Definition # Checkov Datree Kube-
conform

Kube-
Linter

Kube-
Score

Kube-
Sec

SLI-
KUBE

Yaml-
lint

violations
of Best
Practice

This defect category occurs when coding patterns in configuration scripts
violate coding-related best practices, such as not specifying image tags,
or missing labels or annotations for resource organization.

948 439 15 - 106 160 171 57 -

Built-in
Features

This defect category occurs when manifests deploy or fail to disable
risky built-in components and legacy features, such as the Kubernetes
Dashboard, Helm v2 Tiller, or insecure NGINX Ingress snippets.

2 2 - - - - - - -

Control
Plane Con-
figuration

This defect category occurs when Kubernetes control plane or kubelet
settings are misconfigured through flags, admission plugins, or certifi-
cate parameters, such as anonymous-auth enabled, missing TLS certs, or
disabled RBAC admission plugins.

0 0 - - - - - - -

Broken
Isolation

This defect category occurs when Kubernetes resources are configured
to break isolation boundaries by sharing host namespaces or binding
sensitive host interfaces such as hostPID, hostIPC, or hostNetwork.

32 20 0 - 9 - 0 3 -

Missing
Availabil-
ity Safe-
guards

This defect category occurs when workloads are deployed without safe-
guards that improve availability. Safeguards include, for example, replica
requirements, PodDisruptionBudgets, cronjob deadlines, or topology
spread constraints.

50 - 0 - 0 45 - 5 -

Tool Setup This defect category occurs when configuration scripts violate require-
ments imposed by higher-level Kubernetes management tools, such as
GitOps platforms, CI/CD controllers, and operators. These tools extend
Kubernetes with their own conventions for labels, namespaces, and
resource configurations.

0 - 0 - - - - - -

Total 1,032 461 15 - 115 205 171 65 -

mountPath: /var/lib/kubelet and mountPath:1

/var/lib/kubelet/plugins/ebs.csi.aws.com2

appear for two instances of incorrect Helming where a3

hard-coded value is used for a key called ‘mountPath.’4

The commonality here is both coding patterns having a5

hard-coded value for a key that is used in a template.6

Thus, we can abstract these coding patterns into a rule7

‘isTemplate(x)∧∃((x.key)∧ isHardCoded(x.key.value)).’ We8

repeat the same process for orphanism.9

ConShifu is a static analysis tool that we execute using10

the command line for 2,260 scripts in 0.76 hours. Using11

ConShifu we identify 381 instances of defects. From these12

identified defects, we evaluate a random sample of 19213

instances. On this sample, we obtain an average precision14

and recall of respectively, 0.83 and 0.92. The precision and15

recall of ConShifu for incorrect Helming is respectively, 0.8516

and 0.96. The precision and recall of ConShifu for orphanism17

is respectively, 0.81 and 0.89. These results are obtained at18

a 95% confidence level, providing us the confidence that19

the detected instances of incorrect Helming and orphanism20

could be of relevance to practitioners.21

Step#3 - Evaluation Using Practitioner Feedback: We sub-22

mit issue reports to obtain feedback on the detected defects23

by ConShifu. We start with 185 repositories and exclude24

archived ones, resulting in 124 active repositories as of Au-25

gust 01, 2024. We apply ConShifu on these 124 repositories 26

to detect defects and submit issue reports for developer 27

feedback. ConShifu analyzes 8,576 scripts in 22 minutes and 28

respectively, identifies 183 and 198 instances of incorrect 29

Helming and orphanism. We take a random sample and 30

submit 24 issue reports for 26 instances of incorrect Helming 31

and 18 instances of orphanism. We take a random sample 32

to comply with ethical recommendations by not spamming 33

the practitioners [36]. Each issue report includes the defect’s 34

location, a brief description, the potential consequences, and 35

a fix that is submitted as a GitHub pull request. The 24 sub- 36

mitted issue reports correspond to 21 distinct repositories. 37

Table 14 lists the repositories for which we submit issue 38

reports with URLs to the issue reports. 39

5.2.2 Results for RQ3.b 40

As of Jan 20 2025, we obtain 33 responses for 44 defects. 41

Practitioners have confirmed 26 defects as valid. As shown 42

in Figure 6, of the 26 valid defects, 21 are related to incorrect 43

Helming and 5 are related to orphanism. Four defects of 44

orphanism detected by ConShifu are rejected as they re- 45

side in an application where the configuration values are 46

expected to be provided by users. Evidence of submitted 47

defect reports are available online [112]. 48

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xiv

TABLE 13: Rules Used by ConShifu

Category Rule String Pattern
Incorrect Helming isTemplate(x) ∧ ∃((x.key) ∧

isHardCoded(x.key.value))
N/A

Orphanism (isKind(x) ∧ ¬isReferenced(x.key.value)) ∨
(isKind(x) ∧ ¬isReferenceExist(x.key.value)) ‘ServiceAccount,’ ‘ClusterRole,’ ‘StorageClass,’

‘PersistentVolumeClaim,’ ‘PersistentVolume,’ ‘Role’

Answer to RQ3.b: We submit 44 defect reports and
receive 33 responses, of which 26 are confirmed valid by
practitioners. Among these, 21 relate to incorrect Helming
and 5 to orphanism. The agreement rate is 79% for the
acknowledged defect reports.

1

TABLE 14: Issue reports per repository.

Repository Count Issue(s)
kedacore/charts 1 [1]
aquasecurity/trivy-operator 1 [1]
clastix/kamaji 1 [1]
k8gb-io/k8gb 1 [1]
kubernetes-sigs/aws-ebs-csi-driver 1 [1]
zalando/postgres-operator 2 [1], [2]
carina-io/carina 2 [1], [2]
mspnp/microservices-reference-implementation 1 [1]
apache/openwhisk-deploy-kube 2 [1], [2]
apache/dubbo-admin 1 [1]
aws/amazon-vpc-cni-k8s 1 [1]
kube-logging/logging-operator 1 [1]
kube-green/kube-green 1 [1]
aws/eks-charts 1 [1]
senthilrch/kube-fledged 1 [1]
kubeshark/kubeshark 1 [1]
clusternet/clusternet 1 [1]
kadalu/kadalu 1 [1]
mongodb/mongodb-enterprise-kubernetes 1 [1]
kubernetes-sigs/prometheus-adapter 1 [1]
kserve/kserve 1 [1]

6 DISCUSSION2

We discuss our findings as follows:3

6.1 Significance of Our Empirical Study4

The significance of our work can be summarized as follows:5

• Our findings fundamentally advance the science of con-6

tainer orchestration by providing the first systematic in-7

vestigation of defects in Kubernetes configuration scripts.8

Despite Kubernetes being the most popular tool to imple-9

ment the practice of container orchestration [12], configu-10

ration defects has remained an under-explored area. Our11

taxonomy and empirical findings fill this gap, establishing12

a foundation for future research in configuration quality13

assurance and automated repair;14

• The taxonomy of configuration defects contributes to the15

knowledge of software defect literature. Prior work [76]16

has demonstrated that defect taxonomies are valuable for17

validation and verification efforts. Our taxonomy reveals18

categories specific to container orchestration, such as or-19

phanism, pod scheduling, and incorrect Helming, which20

have not been documented in previous defect studies.21

These categories enable targeted improvements in qual- 22

ity assurance for container orchestration. Understanding 23

which defects occur frequently and their consequences 24

helps prioritize detection and prevention efforts; 25

• The dataset presented in this paper can be used for tool 26

evaluation. Our evaluation of eight static analysis tools 27

reveals which defect categories are currently supported 28

and which categories lack tool support. These insights 29

can be used to further improve tools to detect defects for 30

container orchestration; 31

• Automated program repair for container orchestration 32

is an under-explored area with a lot of potential. Our 33

dataset of fix patterns makes a foundational contribution 34

to this area. The documented patterns show how prac- 35

titioners resolve different types of configuration defects. 36

This dataset can be used to evaluate existing program 37

repair techniques for configuration defects and develop 38

new techniques for configuration repair; and 39

• We have developed a new tool called ConShifu that iden- 40

tifies defects that have been confirmed by open source 41

contributors. This shows that the identified defect cate- 42

gories and our tool has relevance for practitioners. 43

We further discuss the implications and limitations respec- 44

tively, in Sections 6.2 and 6.3. 45

6.2 Implications of Our Findings 46

The implications of our findings are: 47

6.2.1 Prioritizing Validation Efforts Based on Defect 48

Frequency 49

Our analysis of defect frequency highlights three implica- 50

tions: 51

1) practitioners should prioritize validation efforts for high- 52

frequency categories, such as entity referencing and un- 53

satisfied dependency, since these fields are foundational 54

for Kubernetes manifests and account for the majority of 55

observed defects; 56

2) tool builders should ensure that analyzers provide ade- 57

quate coverage for categories, such as entity referencing 58

and unsatisfied dependency; and 59

3) although categories, such as orphanism and property 60

annotation are less frequent, they still require mitigation 61

as they can lead to serious consequences, such as crashes 62

and outages. 63

6.2.2 ‘Shift Left’ Approach Towards Defect Detection 64

In software development, the ‘shift left’ approach advocates 65

for pro-active integration of quality assurance activities, 66

https://github.com/kedacore/charts/issues/648
https://github.com/aquasecurity/trivy-operator/issues/2208
https://github.com/clastix/kamaji/issues/505
https://github.com/k8gb-io/k8gb/issues/1676
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/issues/2101
https://github.com/zalando/postgres-operator/issues/2707
https://github.com/zalando/postgres-operator/issues/2752
https://github.com/carina-io/carina/issues/208
https://github.com/carina-io/carina/issues/210
https://github.com/mspnp/microservices-reference-implementation/issues/243
https://github.com/apache/openwhisk-deploy-kube/issues/784
https://github.com/apache/openwhisk-deploy-kube/issues/782
https://github.com/apache/dubbo-admin/issues/1282
https://github.com/aws/amazon-vpc-cni-k8s/issues/3009
https://github.com/kube-logging/logging-operator/issues/1791
https://github.com/kube-green/kube-green/issues/460
https://github.com/aws/eks-charts/issues/1147
https://github.com/senthilrch/kube-fledged/issues/234
https://github.com/kubeshark/kubeshark/issues/1601
https://github.com/clusternet/clusternet/issues/814
https://github.com/kadalu/kadalu/issues/1075
https://github.com/mongodb/mongodb-enterprise-kubernetes/pull/294
https://github.com/kubernetes-sigs/prometheus-adapter/issues/675
https://github.com/kserve/kserve/issues/3929

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xv

Incorrect Helming Orphanism Total
0
10
20
30
40
50

26
18

44

21

5

26
16

3

19

0
7 75 6

11C
ou

nt

Submitted
Accepted
Fixed
Rejected
NoResponse

Fig. 6: Count of submitted, accepted, and fixed defects identified by ConShifu.

such as application of static analysis tools in the software1

development process [72]. We advocate for a ‘shift left’2

approach for configuration management of Kubernetes as3

well. From our analysis, we observe 533 of the 719 defects4

result in a crash or an incorrect operation or outage. This5

finding shows defects in Kubernetes configuration scripts to6

be consequential, and therefore the community should take7

actions on how to facilitate defect detection for Kubernetes8

configuration scripts. Our findings and the dataset could9

be helpful in this regard as it could help the community10

understand the nature of defects. While static analysis tools11

suffer from low actionability due to false positives [80], these12

tools still provide value for practitioners [3], and therefore13

could be useful for detecting configuration defects.14

Despite their limitations, practitioners can still benefit from15

using these tools, as they detect coding patterns that can16

aid in validation efforts. Moreover, prior work shows that17

practitioners still find static analysis tools valuable even18

when they produce false positives, since detecting critical19

defects is perceived to be better than missing them [3]. Our20

evaluation shows certain alerts correspond to violations of21

best practice, availability safeguards, and resource isolation22

issues. Therefore, despite low precision in our evaluation,23

these tools remain useful in practice for validating configu-24

ration scripts used in Kubernetes.25

6.2.3 The Need for Enhancing Static Analysis Tools for26

Kubernetes27

According to our analysis, none of the studied tools have28

support for 7 of the 15 categories. We also observe the29

second most frequently occurring defect category is un-30

satisfied dependency for which none of the eight studied31

tools provide any support. With a precision value of 0.28,32

Kubeconform has the highest average precision amongst33

all 8 tools. This is lower than what practitioners perceive34

‘acceptable,’ i.e., a precision <= 0.90 [80]. Furthermore,35

while 5 of the 8 studied tools support the most frequently36

occurring category of entity referencing, the precision and37

recall is ≤ 0.03 for each tool.38

The above-mentioned evidence highlights the need of en-39

hancing static analysis tools for Kubernetes with respect to40

support and increasing detection accuracy. We provide three41

recommendations. First, detection rules used by existing42

tools need to be improved. Our curated dataset of defects43

can be used for improving the rules. Second, practitioner44

feedback can be collected to improve the detection accuracy45

of static analysis tools. These tools should allow for seamless46

integration into existing developer workspace in order to47

collect feedback for the detected defects. Prior research also48

advocated for obtaining practitioner feedback to improve49

detection accuracy of static analysis tools [79]. Third, run- 50

time data from Kubernetes clusters can be collected to detect 51

five categories of defects namely, conditional, CR, property 52

annotation, unsatisfied dependency, and volume mounting. 53

Detection for each of these categories is dependent on infor- 54

mation that can be collected at runtime. An example utility 55

is ‘kubectl cluster-info’ that can provide cluster information 56

at runtime [59]. 57

6.2.4 The Need for Automated Configuration Defect Re- 58

pair Tools for Kubernetes 59

Our findings highlight the need of developing automated 60

defect repair tools for Kubernetes configuration scripts. The 61

top four most frequently occurring fix patterns are configu- 62

ration value changes, directive fix, property modification, 63

and rule fix that are applied manually to fix 553 out of 64

719 defects. In order to develop defect repair techniques, 65

researchers can use the curated list of defects and their 66

corresponding fixes that are available as part of our dataset. 67

Each defect in our dataset is associated with a fix pattern 68

and linked to its GitHub issue and pull request, enabling 69

researchers to trace how a reported defect was resolved in 70

practice. As such, the dataset can support the development 71

and evaluation of automated defect repair tools, similar to 72

prior work that has leveraged curated defect-fix datasets for 73

program repair research [11], [20]. Chen et al. [20] trained 74

a sequence-to-sequence model using a large corpus of real 75

bug–fix pairs to automatically generate patches for Java 76

programs. Bader et al. [11] mined over 1,200 historical 77

bug–fix commits to learn recurring fix patterns, enabling 78

it to suggest human-like repairs with high accuracy. Re- 79

searchers can investigate if the above-mentioned methods 80

can be applied by using our identified fix patterns. We posit 81

prior automated defect repair techniques to under-perform 82

for 8 of the 15 defect categories that have not been reported 83

in prior software systems. 84

6.2.5 Prioritizing Validation Efforts Based on Conse- 85

quences 86

Our study shows that configuration defects can lead to seri- 87

ous consequences, such as crashes, outages, and exposure 88

of unauthorized data. In total, 348 out of 719 defects in 89

our dataset map to these severe consequences, underscoring 90

the serious impact of configuration defects on Kubernetes- 91

based deployment. Mapping defect categories to their con- 92

sequences provides actionable insights: practitioners can 93

prioritize validation efforts based on the severity of po- 94

tential consequences. For example, the entity referencing 95

category frequently maps to crashes or outages, with 60 out 96

of 125 defects leading to crashes or outages, and could be 97

considered high priority for validation efforts. 98

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xvi

6.2.6 Opportunities for Automating Configuration Inex-1

ecutability Detection2

From Section 4.2.1, we observe 52 defects to be related to3

configuration inexecutability. We find these defects to not4

exhibit any explicit symptoms, such as crashes or outages,5

which makes the defect detection process challenging. Ac-6

cording to our analysis, practitioners take a reactive ap-7

proach where they use the ‘kubectl’ command manually8

to identify these defects. This approach is time consuming,9

which necessitates development of automated techniques.10

One possible future direction can be usage of existing log-11

based defect localization techniques [27]. Another possible12

future direction could be application of reachability anal-13

ysis [110] to detect defects related to configuration inexe-14

cutability.15

6.3 Threats to Validity16

We discuss the limitations of our paper as follows:17

Conclusion Validity: The qualitative analysis process is sub-18

ject to rater bias as the first and second authors derived19

categories for defects. In the case of disagreements, the last20

author was the resolver. We acknowledge that the inclusion21

of the resolver might have added bias in the qualitative22

analysis process. Answers to RQ3 is limiting, as we use eight23

tools and may have missed tools not included our paper.24

We mitigate this limitation by using a systematic selection25

criteria. Additionally, evaluation results for studied tools is26

dependent on the dataset created in Section 3.1, which may27

bias the results. Our definition of false positives, which only28

considers defects from our curated dataset is limiting as it29

may underestimate tool capabilities.30

Construct Validity: Our study is susceptible to construct31

validity as the defect identification process depends on the32

accuracy and completeness of the parsed scripts. ConShifu33

is susceptible to miss defects as it uses a rule-based approach34

to identify defects. Furthermore, ConShifu can generate35

false positives while reporting instances of incorrect Helm-36

ing and orphanism. ConShifu may fail to detect instances of37

incorrect Helm if there are no Helm scripts, values.yaml38

files, or templates.39

External Validity: Our findings are obtained from OSS repos-40

itories, which may not generalize for configuration scripts41

used in proprietary repositories. We mitigate this limitation42

by analyzing repositories from GitHub, which is the most43

popular code sharing platform.44

7 RELATED WORK45

Our paper is related with existing research on defect catego-46

rization and quality assurance aspects of Kubernetes, which47

we describe in the following subsections:48

7.1 Prior Research Related with Defect Categorization49

Software defect categorization has been of interest to re-50

searchers since the 1990s. In 1992, Chillarege and col-51

leagues [21] proposed the orthogonal defect classification52

(ODC) taxonomy, which consists of eight defect categories.53

Since then, researchers have used and extended the ODC54

taxonomy. For instance, Alannsary and Tian [2] and Silva 55

et al. [90] used ODC to respectively, categorize defects 56

for software-as-a-service and embedded software systems. 57

ODC was also extended by Hunny et al. [46] to classify 58

security vulnerabilities. 59

Researchers have also developed their own taxonomies 60

because of ODC’s limitations for modern software sys- 61

tems [89]. Researchers, such as Yu et al. [107], Wan et al. [96], 62

Cui et al. [26], and Du et al. [32] in separate publications 63

derived defect taxonomies respectively, for container run- 64

time systems, blockchain projects, database systems, and 65

federated learning systems. Makhshari and Mesbah [68], 66

Chen et al. [19], Shen et al. [88], Gao et al. [35], Wang et. 67

at [98], Wang et. al [97] constructed defect taxonomies 68

respectively, for IoT software projects, deep learning-based 69

deployment, deep learning compilers, distributed systems, 70

android applications, and autopilot software systems. Wang 71

et al. [99] analyzed 83 defects in WeChat Mini-Programs, 72

and categorized them into 6 categories. Cotroneo et al. [25] 73

categorized the failures of OpenStack using a bottom-up 74

approach. Hassan et al. [42] conducted an empirical study 75

involving 5,110 state reconciliation defects and classify these 76

defects into 8 categories. Rahman et al. [76] developed a 77

taxonomy of defects in IaC scripts by applying descriptive 78

coding with 1,448 defect-related commits. Humbatova et 79

al. [45] analyzed GitHub issues and Stack Overflow posts to 80

develop a classification of faults for software projects involv- 81

ing deep learning. Wang et al. [100] studied configuration 82

defects that occur when these configurations are provided 83

at runtime for database and web server systems. 84

7.2 Prior Research Related with Quality Aspects of Ku- 85

bernetes 86

Researchers have shown increasing interest in quality as- 87

surance for Kubernetes in recent years. Yang et al. [105] 88

focused on vulnerabilities in the orchestration layer, and 89

recommended two practices for enhancing the security of 90

Kubernetes clusters. Kamieniarz et al. [54] studied the secu- 91

rity vulnerabilities that can occur in Kubernetes-related de- 92

ployments. Rahman et al. [77] in particular identified what 93

types of Kubernetes objects are impacted by security weak- 94

nesses, such as hard-coded passwords and insecure HTTP. 95

They [77] also quantified correlations between development 96

activity metrics and the presence of security weaknesses. 97

Carmen et al. [16] in their study, created a new taxon- 98

omy for Kubernetes scheduling techniques, organizing the 99

techniques into five main domains and highlighting where 100

current scheduling techniques fall short, especially in terms 101

of security and performance. Gu et al. [39], Sun et al. [93], 102

[94], and Xu et al. [103] in separate publications focused 103

on analyzing and detecting defects related to Kubernetes 104

controllers. Xu et al. [103] focused on deriving a taxonomy 105

for defects that occur in Kubernetes operators, which are 106

specialized controllers. Gu et al. [39] and Sun et al. [93], 107

[94] focused on deriving testing techniques that can expose 108

defects in Kubernetes controllers and operators. Barletta et 109

al. [12] analyzed and classified failures in the Kubernetes or- 110

chestration layer and developed a fault-injection framework 111

that targets the cluster’s etcd datastore. 112

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xvii

Prior research has focused on controller and operator related1

defects [39], [93], [94]. A controller is a core Kubernetes2

component that continuously monitors the cluster state and3

reconciles it to match the desired configuration, such as4

ensuring the correct number of pods, while an operator5

is a custom controller that automates complex application-6

specific tasks by managing custom resources. Barletta et7

al. [12] studied Kubernetes failure at the orchestrator level,8

focusing on how etcd datastore corruption affects the core9

orchestration platform rather than defects in individual10

controllers or operators. The above-mentioned publications11

focused on failures caused by defects in these core or ex-12

tension mechanisms, as well as runtime and infrastructure-13

level issues. In contrast, our work targets configuration14

defects in the Kubernetes YAML scripts written by prac-15

titioners to define Kubernetes resources. Our taxonomy16

provides a categorization of configuration defects, which17

highlights configuration scripts as a distinct focus relative18

to prior work on operators and controllers. The closest in19

spirit to our work is research conducted by Rahman et20

al. [77], who only focused on security-related defects. By21

investigating configuration defects in general, our study22

identifies categories that prior research has not addressed.23

The defect categories that we have identified but are not24

reported in prior Kubernetes-related papers [12], [15], [39],25

[75], [77], [84]–[87], [93], [94], [113] are: custom resource,26

data field, entity referencing, incorrect Helming, names-27

paces, orphanism, pod scheduling, property annotation,28

unsatisfied dependency, and volume mounting. Also, prior29

work have not investigated fix patterns, consequences, and30

evaluation of existing static analysis tools. While working31

with Kubernetes, practitioners need to use configuration32

options related to (i) pods and (ii) state reconciliation.33

To configure pods, i.e., abstractions to group containers,34

practitioners need to understand non-trivial concepts such35

as affinity and annotations. Likewise, to configure state36

reconciliation, developers need to understand concepts such37

as custom resources. Erroneous usage of the these configura-38

tion options can result in defective Kubernetes deployments.39

In short, with respect to advancing science, our paper ad-40

dresses several gaps in Kubernetes-related prior research by:41

1) identifying Kubernetes-specific entities, namely names-42

paces, pods, and properties to be defect-related when43

using configuration scripts, which prior work has not44

identified;45

2) characterizing how usage of entity referencing can lead46

to defects in configuration scripts for Kubernetes, which47

prior work has not examined;48

3) providing a mapping between configuration defects and49

their consequences as well as fix patterns, which prior50

work has not documented;51

4) quantifying the support of existing static analysis tools52

for detecting identified defect categories, which prior53

work has not evaluated; and54

5) identifying 7 categories of configuration defects, namely55

custom resource, incorrect Helming, namespaces, or-56

phanism, pod scheduling, property annotation, and vol-57

ume mounting, that have not been reported in any prior 58

work. 59

8 CONCLUSION 60

Kubernetes is becoming popular in industry as a tool 61

for automated management of containers. Configuration 62

defects in Kubernetes can be consequential and, unfortu- 63

nately, are not uncommon. This paper reports an empir- 64

ical study about Kubernetes-related configuration defects 65

alongside their consequences and fix patterns. The goals 66

of this empirical study are (i) to help practitioners who 67

use Kubernetes to detect configuration defects, and (ii) to 68

offer researchers opportunities for improving existing static 69

analysis tools for detecting those defects. Our study includes 70

719 defects mined from 185 OSS repositories. We identify 71

15 defect categories for Kubernetes configuration scripts. 72

We find that insights obtained from existing defects can be 73

used to identify previously-unknown defects. For example, 74

using our linter ConShifu, we identify 26 defects that have 75

been accepted as valid defects by the practitioners of the 76

corresponding OSS projects. 77

Our research study has produced multiple lessons. For 78

example, we provide recommendations for researchers on 79

how existing defects that are available as part of our dataset, 80

can be leveraged to enhance existing static analysis tools 81

and to develop defect repair techniques for Kubernetes. We 82

also advocate for incorporating practitioner feedback and 83

runtime information to improve existing static analysis tools 84

for Kubernetes configuration scripts. 85

DATA AVAILABILITY 86

The datasets and source code used for the 87

paper are publicly-available online as a repli- 88

cation package [112]. URL of the package: 89

https://figshare.com/s/5c63f862a1abd95f7708. 90

ACKNOWLEDGMENTS 91

We thank the PASER group at Auburn University for their 92

valuable feedback. This research was partially funded by the 93

U.S. National Science Foundation (NSF) Award # 2310179, 94

2312321, # CNS-2026928, # CCF-2349961, and # CCF- 95

2319472. 96

REFERENCES 97

[1] Adrienverge, “yamllint,” Online, 2024, accessed: 2024-06-23. 98

[Online]. Available: https://github.com/adrienverge/yamllint 99

[2] M. Alannsary and J. Tian, “Cloud-odc: Defect classification and 100

analysis for the cloud,” pp. 71–77, 2015, copyright - Copyright 101

The Steering Committee of The World Congress in Computer 102

Science, Computer Engineering and Applied Computing (World- 103

Comp) 2015; Document feature - Diagrams; Tables; Graphs; ; Last 104

updated - 2015-08-21. 105

[3] A. Ami, K. Moran, D. Poshyvanyk, and A. Nadkarni, “‘false 106

negative - that one is going to kill you’ - understanding 107

industry perspectives of static analysis based security testing,” 108

in 2024 IEEE Symposium on Security and Privacy (SP). Los 109

Alamitos, CA, USA: IEEE Computer Society, may 2024, pp. 110

23–23. [Online]. Available: https://doi.ieeecomputersociety.org/ 111

10.1109/SP54263.2024.00019 112

https://github.com/adrienverge/yamllint
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00019
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00019
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00019

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xviii

[4] aquasecurity, “helm - trivy-server should use1

trivy.repository:trivy.tag for image if defined,” 2022,2

accessed: 2024-06-23. [Online]. Available: https://github.com/3

aquasecurity/trivy-operator/issues/7294

[5] A. B. Aral, “Dear linux, privileged ports must die,”5

August 2022, accessed: 2024-07-17. [Online]. Available: https:6

//ar.al/2022/08/30/dear-linux-privileged-ports-must-die/7

[6] Argoproj, “application controller needs a liveness probe,” 2019,8

accessed: 2024-06-23. [Online]. Available: https://github.com/9

argoproj/argo-cd/issues/178210

[7] ——, “core-install manifest references undefined argocd-server11

serviceaccount,” 2021, accessed: 2024-06-23. [Online]. Available:12

https://github.com/argoproj/argo-cd/issues/776013

[8] argoproj labs, “operator resources should have unique14

labels.” 2022, accessed: 2024-06-23. [Online]. Available: https:15

//github.com/argoproj-labs/argocd-operator/issues/75016

[9] H. Arksey and L. O’Malley, “Scoping studies: towards17

a methodological framework,” International Journal of Social18

Research Methodology, vol. 8, no. 1, pp. 19–32, 2005. [Online].19

Available: https://doi.org/10.1080/136455703200011961620

[10] Aws, “vsphere username escaped resulting in failed21

authentication on creating workload cluster,” 2022, accessed:22

2024-06-23. [Online]. Available: https://github.com/aws/23

eks-anywhere/issues/163924

[11] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning25

to fix bugs automatically,” Proceedings of the ACM on Programming26

Languages, vol. 3, no. OOPSLA, pp. 1–27, 2019.27

[12] M. Barletta, M. Cinque, C. Di Martino, Z. T. Kalbarczyk, and R. K.28

Iyer, “Mutiny! how does kubernetes fail, and what can we do29

about it?” in 2024 54th Annual IEEE/IFIP International Conference30

on Dependable Systems and Networks (DSN), 2024, pp. 1–14.31

[13] A. Baur, “Packaging of kubernetes applications,” in Proceedings of32

the 2020 OMI Seminars (PROMIS 2020), vol. 1. Universität Ulm,33

2021, pp. 1–1.34

[14] blackduck, “Policy-as-code,” 2023, accessed: 2024-06-23.35

[Online]. Available: https://www.blackduck.com/glossary/36

what-is-policy-as-code.html37

[15] D. B. Bose, A. Rahman, and S. I. Shamim, “‘under-38

reported’security defects in kubernetes manifests,” in 202139

IEEE/ACM 2nd International Workshop on Engineering and Cyber-40

security of Critical Systems (EnCyCriS). IEEE, 2021, pp. 9–12.41

[16] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues42

and challenges,” ACM Comput. Surv., vol. 55, no. 7, dec 2022.43

[Online]. Available: https://doi.org/10.1145/353960644

[17] H. Chart, “The chart best practices guide,” 2024, accessed:45

2024-06-23. [Online]. Available: https://v2-14-0.helm.sh/docs/46

chart_best_practices/47

[18] Checkov, “Checkov,” Online, 2024, accessed: 2024-06-07. [Online].48

Available: https://www.checkov.io/49

[19] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu,50

“An empirical study on deployment faults of deep learning51

based mobile applications,” in 2021 IEEE/ACM 43rd International52

Conference on Software Engineering (ICSE), 2021, pp. 674–685.53

[20] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshy-54

vanyk, and M. Monperrus, “Sequencer: Sequence-to-sequence55

learning for end-to-end program repair,” IEEE Transactions on56

Software Engineering, vol. 47, no. 9, pp. 1943–1959, 2019.57

[21] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus,58

B. Ray, and M.-Y. Wong, “Orthogonal defect classification-a con-59

cept for in-process measurements,” IEEE Transactions on Software60

Engineering, vol. 18, no. 11, pp. 943–956, Nov 1992.61

[22] CNCF, “Container Orchestration,” https://glossary.cncf.io/62

container-orchestration/, 2024, [Online; accessed 24-August-63

2024].64

[23] J. Cohen, “A coefficient of agreement for nominal scales,” 65

Educational and Psychological Measurement, vol. 20, no. 1, pp. 66

37–46, 1960. [Online]. Available: http://dx.doi.org/10.1177/ 67

001316446002000104 68

[24] Controlplane, “Kubesec,” Online, 2024, accessed: 2024-06-23. 69

[Online]. Available: https://kubesec.io/ 70

[25] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and 71

N. Bidokhti, “How bad can a bug get? an empirical analysis of 72

software failures in the openstack cloud computing platform,” 73

in Proceedings of the 2019 27th ACM Joint Meeting on European 74

Software Engineering Conference and Symposium on the Foundations 75

of Software Engineering, ser. ESEC/FSE 2019. New York, NY, 76

USA: Association for Computing Machinery, 2019, p. 200–211. 77

[Online]. Available: https://doi.org/10.1145/3338906.3338916 78

[26] Z. Cui, W. Dou, Y. Gao, D. Wang, J. Song, Y. Zheng, 79

T. Wang, R. Yang, K. Xu, Y. Hu, J. Wei, and T. Huang, 80

“Understanding transaction bugs in database systems,” in 81

Proceedings of the IEEE/ACM 46th International Conference on 82

Software Engineering, ser. ICSE ’24. New York, NY, USA: 83

Association for Computing Machinery, 2024. [Online]. Available: 84

https://doi.org/10.1145/3597503.3639207 85

[27] H. Dai, H. Li, C.-S. Chen, W. Shang, and T.-H. Chen, “Logram: Ef- 86

ficient log parsing using nn-gram dictionaries,” IEEE Transactions 87

on Software Engineering, vol. 48, no. 3, pp. 879–892, 2022. 88

[28] Datree, “Datree,” Online, 2024, accessed: 2024-06-23. [Online]. 89

Available: https://www.datree.io/ 90

[29] Deckhouse, “During installation main queue stucks with up- 91

meter module,” 2023, accessed: 2024-06-23. [Online]. Available: 92

https://github.com/deckhouse/deckhouse/issues/3704 93

[30] R. Donato, “What is schema validation?” 2023, accessed: 94

2024-06-23. [Online]. Available: https://www.packetcoders.io/ 95

what-is-schema-validation/ 96

[31] D. D’Silva and D. D. Ambawade, “Building a zero trust archi- 97

tecture using kubernetes,” in 2021 6th International Conference for 98

Convergence in Technology (I2CT), 2021, pp. 1–8. 99

[32] X. Du, X. Chen, J. Cao, M. Wen, S.-C. Cheung, and 100

H. Jin, “Understanding the bug characteristics and fix 101

strategies of federated learning systems,” in Proceedings of 102

the 31st ACM Joint European Software Engineering Conference 103

and Symposium on the Foundations of Software Engineering, 104

ser. ESEC/FSE 2023. New York, NY, USA: Association for 105

Computing Machinery, 2023, p. 1358–1370. [Online]. Available: 106

https://doi.org/10.1145/3611643.3616347 107

[33] elastic, “[metricbeat] dns lookup failure for node host,” 2019, 108

accessed: 2024-06-23. [Online]. Available: https://github.com/ 109

elastic/helm-charts/issues/394 110

[34] G. Elbaz, “Static code analysis: Top 7 methods, pros/cons and 111

best practices,” 2023, accessed: 2024-06-23. [Online]. Available: 112

https://www.oligo.security/academy/static-code-analysis 113

[35] Y. Gao, W. Dou, F. Qin, C. Gao, D. Wang, J. Wei, R. Huang, 114

L. Zhou, and Y. Wu, “An empirical study on crash recovery bugs 115

in large-scale distributed systems,” in Proceedings of the 2018 26th 116

ACM Joint Meeting on European Software Engineering Conference 117

and Symposium on the Foundations of Software Engineering, 118

ser. ESEC/FSE 2018. New York, NY, USA: Association for 119

Computing Machinery, 2018, p. 539–550. [Online]. Available: 120

https://doi.org/10.1145/3236024.3236030 121

[36] N. E. Gold and J. Krinke, “Ethical mining: A case study 122

on msr mining challenges,” in Proceedings of the 17th 123

International Conference on Mining Software Repositories, ser. 124

MSR ’20. New York, NY, USA: Association for Computing 125

Machinery, 2020, p. 265–276. [Online]. Available: https: 126

//doi.org/10.1145/3379597.3387462 127

[37] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a 128

firehose,” in 2012 9th IEEE Working Conference on Mining Software 129

Repositories (MSR). IEEE, 2012, pp. 12–21. 130

https://github.com/aquasecurity/trivy-operator/issues/729
https://github.com/aquasecurity/trivy-operator/issues/729
https://github.com/aquasecurity/trivy-operator/issues/729
https://ar.al/2022/08/30/dear-linux-privileged-ports-must-die/
https://ar.al/2022/08/30/dear-linux-privileged-ports-must-die/
https://ar.al/2022/08/30/dear-linux-privileged-ports-must-die/
https://github.com/argoproj/argo-cd/issues/1782
https://github.com/argoproj/argo-cd/issues/1782
https://github.com/argoproj/argo-cd/issues/1782
https://github.com/argoproj/argo-cd/issues/7760
https://github.com/argoproj-labs/argocd-operator/issues/750
https://github.com/argoproj-labs/argocd-operator/issues/750
https://github.com/argoproj-labs/argocd-operator/issues/750
https://doi.org/10.1080/1364557032000119616
https://github.com/aws/eks-anywhere/issues/1639
https://github.com/aws/eks-anywhere/issues/1639
https://github.com/aws/eks-anywhere/issues/1639
https://www.blackduck.com/glossary/what-is-policy-as-code.html
https://www.blackduck.com/glossary/what-is-policy-as-code.html
https://www.blackduck.com/glossary/what-is-policy-as-code.html
https://doi.org/10.1145/3539606
https://v2-14-0.helm.sh/docs/chart_best_practices/
https://v2-14-0.helm.sh/docs/chart_best_practices/
https://v2-14-0.helm.sh/docs/chart_best_practices/
https://www.checkov.io/
https://glossary.cncf.io/container-orchestration/
https://glossary.cncf.io/container-orchestration/
https://glossary.cncf.io/container-orchestration/
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
https://kubesec.io/
https://doi.org/10.1145/3338906.3338916
https://doi.org/10.1145/3597503.3639207
https://www.datree.io/
https://github.com/deckhouse/deckhouse/issues/3704
https://www.packetcoders.io/what-is-schema-validation/
https://www.packetcoders.io/what-is-schema-validation/
https://www.packetcoders.io/what-is-schema-validation/
https://doi.org/10.1145/3611643.3616347
https://github.com/elastic/helm-charts/issues/394
https://github.com/elastic/helm-charts/issues/394
https://github.com/elastic/helm-charts/issues/394
https://www.oligo.security/academy/static-code-analysis
https://doi.org/10.1145/3236024.3236030
https://doi.org/10.1145/3379597.3387462
https://doi.org/10.1145/3379597.3387462
https://doi.org/10.1145/3379597.3387462

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xix

[38] grafana, “Grafana operator 5.4.1 resource limit too low,1

grafana-operator-controller-manager pod won’t start[bug],”2

2023, accessed: 2024-06-23. [Online]. Available: https://github.3

com/grafana/grafana-operator/issues/12554

[39] J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri,5

O. Legunsen, and T. Xu, “Acto: Automatic end-to-end testing6

for operation correctness of cloud system management,”7

in Proceedings of the 29th Symposium on Operating Systems8

Principles, ser. SOSP ’23. New York, NY, USA: Association9

for Computing Machinery, 2023, p. 96–112. [Online]. Available:10

https://doi.org/10.1145/3600006.361316111

[40] H. Guan, Y. Xiao, J. Li, Y. Liu, and G. Bai, “A comprehensive12

study of real-world bugs in machine learning model optimiza-13

tion,” in 2023 IEEE/ACM 45th International Conference on Software14

Engineering (ICSE), 2023, pp. 147–158.15

[41] hashicorp, “Consul server statefulset volume name isn’t16

truncated,” 2021, accessed: 2024-06-23. [Online]. Available:17

https://github.com/hashicorp/consul-k8s/issues/79818

[42] M. M. Hassan, J. Salvador, S. K. K. Santu, and A. Rahman, “State19

reconciliation defects in infrastructure as code,” Proceedings of the20

ACM on Software Engineering, vol. 1, no. FSE, pp. 1865–1888, 2024.21

[43] W. He, P. Di, M. Ming, C. Zhang, T. Su, S. Li, and Y. Sui, “Finding22

and understanding defects in static analyzers by constructing23

automated oracles,” Proc. ACM Softw. Eng., vol. 1, no. FSE, jul24

2024. [Online]. Available: https://doi.org/10.1145/366078125

[44] K. Huang, B. Chen, S. Wu, J. Cao, L. Ma, and X. Peng,26

“Demystifying dependency bugs in deep learning stack,”27

in Proceedings of the 31st ACM Joint European Software28

Engineering Conference and Symposium on the Foundations of29

Software Engineering, ser. ESEC/FSE 2023. New York, NY,30

USA: Association for Computing Machinery, 2023, p. 450–462.31

[Online]. Available: https://doi.org/10.1145/3611643.361632532

[45] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,33

and P. Tonella, “Taxonomy of real faults in deep learning34

systems,” in Proceedings of the ACM/IEEE 42nd International35

Conference on Software Engineering, ser. ICSE ’20. New York, NY,36

USA: Association for Computing Machinery, 2020, p. 1110–1121.37

[Online]. Available: https://doi.org/10.1145/3377811.338039538

[46] U. Hunny, M. Zulkernine, and K. Weldemariam, “Osdc: Adapt-39

ing odc for developing more secure software,” 03 2013, pp. 1131–40

1136.41

[47] IEEE, “IEEE standard classification for software anomalies,” IEEE42

Std 1044-2009 (Revision of IEEE Std 1044-1993), pp. 1–23, Jan 2010.43

[48] istio, “Add accessmodes option to helm44

grafana chart,” 2018, accessed: 2024-06-23. [On-45

line]. Available: https://github.com/istio/istio/commit/46

64a46ebdd9eec1e805a9800e09e687c0968a446247

[49] jaegertracing, “Incorrect image tag in the published yaml,” 2021,48

accessed: 2024-06-23. [Online]. Available: https://github.com/49

jaegertracing/jaeger-operator/issues/166650

[50] Jake Page, “Kubernetes fail compilation: but they keep51

getting worse,” https://medium.com/@jake.page91/52

kubernetes-fail-compilation-but-they-keep-getting-worse-c6f4fb3e6b38,53

2024, [Online; accessed 29-July-2024].54

[51] Jayme Howard, “You Broke Reddit: The Pi-Day Outage,”55

https://www.reddit.com/r/RedditEng/comments/11xx5o0/56

you_broke_reddit_the_piday_outage/, 2024, [Online; accessed57

30-July-2024].58

[52] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “The symptoms,59

causes, and repairs of bugs inside a deep learning library,”60

Journal of Systems and Software, vol. 177, p. 110935, 2021. [Online].61

Available: https://www.sciencedirect.com/science/article/pii/62

S016412122100032763

[53] K. Kamieniarz and W. Mazurczyk, “A comparative study on64

the security of kubernetes deployments,” in 2024 International65

Wireless Communications and Mobile Computing (IWCMC). IEEE,66

2024, pp. 0718–0723.67

[54] ——, “A comparative study on the security of kubernetes deploy- 68

ments,” in 2024 International Wireless Communications and Mobile 69

Computing (IWCMC), May 2024, pp. 0718–0723. 70

[55] Kedacore, “fix: adj indent of extravolumes volumemounts 71

in 14-keda-deployment,” 2023, accessed: 2024-06-23. [Online]. 72

Available: https://github.com/kedacore/charts/pull/419 73

[56] kserve, “Kserve installation fails with kubeflow due to wrong 74

cert injection namespace for servingruntime webhook,” 2023, 75

accessed: 2024-06-23. [Online]. Available: https://github.com/ 76

kserve/kserve/issues/3187 77

[57] kubernetes, “Kep-2067: Rename the kubeadm "master" 78

label and taint,” 2022. [Online]. Available: https: 79

//github.com/kubernetes/enhancements/blob/master/keps/ 80

sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/ 81

README.md 82

[58] Kubernetes User Case Studies, July 2024. [Online]. Available: 83

https://kubernetes.io/case-studies/ 84

[59] Kubernetes, “Kubernetes Documentation,” https://kubernetes. 85

io/docs/home/, 2024, [Online; accessed 14-August-2024]. 86

[60] kubernetes sigs, “Failed to create listener: bind: permission 87

denied,” 2021, accessed: 2024-06-23. [Online]. Available: https: 88

//github.com/kubernetes-sigs/metrics-server/issues/782 89

[61] ——, “Error on ebs-csi-controller pod,” 2022, accessed: 2024- 90

06-23. [Online]. Available: https://github.com/kubernetes-sigs/ 91

aws-ebs-csi-driver/issues/1357 92

[62] kyverno, “[bug] clusterrole kyverno:events tighten scope on 93

apigroups,” 2022, accessed: 2024-06-23. [Online]. Available: 94

https://github.com/kyverno/kyverno/issues/3222 95

[63] J. R. Landis and G. G. Koch, “The measurement of observer 96

agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 97

159–174, 1977. [Online]. Available: http://www.jstor.org/stable/ 98

2529310 99

[64] K. Li, Y. Xue, S. Chen, H. Liu, K. Sun, M. Hu, H. Wang, 100

Y. Liu, and Y. Chen, “Static application security testing (sast) 101

tools for smart contracts: How far are we?” Proc. ACM 102

Softw. Eng., vol. 1, no. FSE, Jul. 2024. [Online]. Available: 103

https://doi.org/10.1145/3660772 104

[65] linode, “The gatekeeper post install job cannot run pod due 105

to psp and insufficient securitycontext,” 2021, accessed: 2024- 106

06-23. [Online]. Available: https://github.com/linode/apl-core/ 107

issues/688 108

[66] F. Long and M. Rinard, “Automatic patch generation by learning 109

correct code,” SIGPLAN Not., vol. 51, no. 1, p. 298–312, Jan. 2016. 110

[Online]. Available: https://doi.org/10.1145/2914770.2837617 111

[67] longhorn, “[bug] backing image resync not work on v1.2.x,” 112

2022, accessed: 2024-06-23. [Online]. Available: https://github. 113

com/longhorn/longhorn/issues/4738 114

[68] A. Makhshari and A. Mesbah, “Iot bugs and development 115

challenges,” in 2021 IEEE/ACM 43rd International Conference on 116

Software Engineering (ICSE), 2021, pp. 460–472. 117

[69] P. Mendis, W. Reeves, M. A. Babar, Y. Zhang, and 118

A. Rahman, “Evaluating the quality of open source ansible 119

playbooks: An executability perspective,” in Proc. of SEA4DQ, 120

ser. SEA4DQ 2024. New York, NY, USA: Association for 121

Computing Machinery, 2024, p. 2–5. [Online]. Available: 122

https://doi.org/10.1145/3663530.3665019 123

[70] Mirantis, “What are the primary reasons your organization 124

is using Kubernetes?” 2021. [Online]. Available: https://www. 125

mirantis.com/cloud-case-studies/paypal/ 126

[71] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, 127

“Curating GitHub for engineered software projects,” Empirical 128

Software Engineering, pp. 1–35, 2017. [Online]. Available: 129

http://dx.doi.org/10.1007/s10664-017-9512-6 130

https://github.com/grafana/grafana-operator/issues/1255
https://github.com/grafana/grafana-operator/issues/1255
https://github.com/grafana/grafana-operator/issues/1255
https://doi.org/10.1145/3600006.3613161
https://github.com/hashicorp/consul-k8s/issues/798
https://doi.org/10.1145/3660781
https://doi.org/10.1145/3611643.3616325
https://doi.org/10.1145/3377811.3380395
https://github.com/istio/istio/commit/64a46ebdd9eec1e805a9800e09e687c0968a4462
https://github.com/istio/istio/commit/64a46ebdd9eec1e805a9800e09e687c0968a4462
https://github.com/istio/istio/commit/64a46ebdd9eec1e805a9800e09e687c0968a4462
https://github.com/jaegertracing/jaeger-operator/issues/1666
https://github.com/jaegertracing/jaeger-operator/issues/1666
https://github.com/jaegertracing/jaeger-operator/issues/1666
https://medium.com/@jake.page91/kubernetes-fail-compilation-but-they-keep-getting-worse-c6f4fb3e6b38
https://medium.com/@jake.page91/kubernetes-fail-compilation-but-they-keep-getting-worse-c6f4fb3e6b38
https://medium.com/@jake.page91/kubernetes-fail-compilation-but-they-keep-getting-worse-c6f4fb3e6b38
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.sciencedirect.com/science/article/pii/S0164121221000327
https://www.sciencedirect.com/science/article/pii/S0164121221000327
https://www.sciencedirect.com/science/article/pii/S0164121221000327
https://github.com/kedacore/charts/pull/419
https://github.com/kserve/kserve/issues/3187
https://github.com/kserve/kserve/issues/3187
https://github.com/kserve/kserve/issues/3187
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint/README.md
https://kubernetes.io/case-studies/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/kubernetes-sigs/metrics-server/issues/782
https://github.com/kubernetes-sigs/metrics-server/issues/782
https://github.com/kubernetes-sigs/metrics-server/issues/782
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/issues/1357
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/issues/1357
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/issues/1357
https://github.com/kyverno/kyverno/issues/3222
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://doi.org/10.1145/3660772
https://github.com/linode/apl-core/issues/688
https://github.com/linode/apl-core/issues/688
https://github.com/linode/apl-core/issues/688
https://doi.org/10.1145/2914770.2837617
https://github.com/longhorn/longhorn/issues/4738
https://github.com/longhorn/longhorn/issues/4738
https://github.com/longhorn/longhorn/issues/4738
https://doi.org/10.1145/3663530.3665019
https://www.mirantis.com/cloud-case-studies/paypal/
https://www.mirantis.com/cloud-case-studies/paypal/
https://www.mirantis.com/cloud-case-studies/paypal/
http://dx.doi.org/10.1007/s10664-017-9512-6

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xx

[72] Q.-S. Phan, K.-H. Nguyen, and T. Nguyen, “The challenges of1

shift left static analysis,” in 2023 IEEE/ACM 45th International2

Conference on Software Engineering: Software Engineering in Practice3

(ICSE-SEIP), 2023, pp. 340–342.4

[73] Prometheus-community, “[kube-prometheus-stack] complex5

config templating in alertmanager results into helm warning,”6

2023, accessed: 2024-06-23. [Online]. Available: https://github.7

com/prometheus-community/helm-charts/issues/29508

[74] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege es-9

calation,” in 12th USENIX Security Symposium (USENIX Security10

03), 2003.11

[75] A. Rahman, G. Dozier, and Y. Zhang, “Authorship of minor12

contributors in kubernetes configuration scripts: An exploratory13

study,” in Proceedings of the 33rd ACM International Conference on14

the Foundations of Software Engineering, 2025, pp. 1424–1427.15

[76] A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of16

eight: A defect taxonomy for infrastructure as code scripts,”17

in Proceedings of the ACM/IEEE 42nd International Conference18

on Software Engineering, ser. ICSE ’20. New York, NY,19

USA: Association for Computing Machinery, 2020, p. 752–764.20

[Online]. Available: https://doi.org/10.1145/3377811.338040921

[77] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security22

misconfigurations in open source kubernetes manifests: An23

empirical study,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 4,24

May 2023. [Online]. Available: https://doi.org/10.1145/357963925

[78] Ravi Patel, “Introduction to Container Or-26

chestration,” https://medium.com/@ravipatel.it/27

introduction-to-container-orchestration-e219e36007ab, 2024,28

[Online; accessed 22-August-2024].29

[79] S. Reis, R. Abreu, M. d’Amorim, and D. Fortunato, “Leveraging30

practitioners’ feedback to improve a security linter,” in Proceed-31

ings of the 37th IEEE/ACM International Conference on Automated32

Software Engineering, ser. ASE ’22. New York, NY, USA: Associ-33

ation for Computing Machinery, 2023.34

[80] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and35

C. Jaspan, “Lessons from building static analysis tools at36

google,” Commun. ACM, vol. 61, no. 4, p. 58–66, Mar. 2018.37

[Online]. Available: https://doi.org/10.1145/318872038

[81] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.39

[82] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann,40

Y. Guo, and S. Godfrey, “Defect categorization: Making use of a41

decade of widely varying historical data,” in Proceedings of the42

Second ACM-IEEE International Symposium on Empirical Software43

Engineering and Measurement, ser. ESEM ’08. New York, NY,44

USA: Association for Computing Machinery, 2008, p. 149–157.45

[Online]. Available: https://doi.org/10.1145/1414004.141403046

[83] SEC, “U.S. SEC,” https://www.sec.gov/Archives/edgar/data/47

1713445/000162828024006294/reddits-1q423.htm, 2024, [Online;48

accessed 22-Feb-2024].49

[84] M. S. I. Shamim, F. A. Bhuiyan, and A. Rahman, “Xi command-50

ments of kubernetes security: A systematization of knowledge51

related to kubernetes security practices,” 2020 IEEE Secure Devel-52

opment (SecDev), pp. 58–64, 2020.53

[85] S. I. Shamim, H. Hu, and A. Rahman, “Dynamic application54

security testing for kubernetes deployment: An experience report55

from industry,” in Proceedings of the 33rd ACM International Confer-56

ence on the Foundations of Software Engineering, 2025, pp. 514–519.57

[86] ——, “On prescription or off prescription? an empirical study of58

community-prescribed security configurations for kubernetes,”59

in 2025 IEEE/ACM 47th International Conference on Software Engi-60

neering (ICSE). IEEE Computer Society, 2025, pp. 707–707.61

[87] S. I. Shamim, F. Wu, H. Shahriar, A. Skjellum, and62

A. Rahman, “ Authentic Learning Exercise for Kubernetes63

Misconfigurations: An Experience Report of Student Perceptions64

,” in 2025 IEEE/ACM 37th International Conference on Software65

Engineering Education and Training (CSEET). Los Alamitos,66

CA, USA: IEEE Computer Society, May 2025, pp. 292– 67

302. [Online]. Available: https://doi.ieeecomputersociety.org/ 68

10.1109/CSEET66350.2025.00037 69

[88] Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen, 70

“A comprehensive study of deep learning compiler bugs,” in 71

Proceedings of the 29th ACM Joint Meeting on European Software 72

Engineering Conference and Symposium on the Foundations of 73

Software Engineering, ser. ESEC/FSE 2021. New York, NY, 74

USA: Association for Computing Machinery, 2021, p. 968–980. 75

[Online]. Available: https://doi.org/10.1145/3468264.3468591 76

[89] N. Silva and M. Vieira, “Experience report: Orthogonal classifi- 77

cation of safety critical issues,” in 2014 IEEE 25th International 78

Symposium on Software Reliability Engineering, 2014, pp. 156–166. 79

[90] ——, “Software for embedded systems: a quality assessment 80

based on improved odc taxonomy,” in Proceedings of the 81

31st Annual ACM Symposium on Applied Computing, ser. 82

SAC ’16. New York, NY, USA: Association for Computing 83

Machinery, 2016, p. 1780–1783. [Online]. Available: https: 84

//doi.org/10.1145/2851613.2851908 85

[91] Snyk, “What is container orchestration?” https://snyk.io/learn/ 86

container-security/container-orchestration/, 2024, [Online; ac- 87

cessed 23-August-2024]. 88

[92] StackRox, “Kubelinter documentation,” Online, 2024, accessed: 89

2024-06-23. [Online]. Available: https://docs.kubelinter.io/#/ 90

[93] X. Sun, W. Luo, J. T. Gu, A. Ganesan, R. Alagappan, M. Gasch, 91

L. Suresh, and T. Xu, “Automatic reliability testing for cluster 92

management controllers,” in 16th USENIX Symposium on Operat- 93

ing Systems Design and Implementation (OSDI 22), 2022, pp. 143– 94

159. 95

[94] X. Sun, W. Ma, J. T. Gu, Z. Ma, T. Chajed, J. Howell, A. Lattuada, 96

O. Padon, L. Suresh, A. Szekeres et al., “Anvil: Verifying liveness 97

of cluster management controllers,” in 18th USENIX Symposium 98

on Operating Systems Design and Implementation (OSDI 24), 2024, 99

pp. 649–666. 100

[95] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug 101

characteristics in open source software,” Empirical Softw. Engg., 102

vol. 19, no. 6, p. 1665–1705, dec 2014. [Online]. Available: 103

https://doi.org/10.1007/s10664-013-9258-8 104

[96] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in 105

blockchain systems: A large-scale empirical study,” in 2017 106

IEEE/ACM 14th International Conference on Mining Software Repos- 107

itories (MSR), 2017, pp. 413–424. 108

[97] D. Wang, S. Li, G. Xiao, Y. Liu, and Y. Sui, “An exploratory 109

study of autopilot software bugs in unmanned aerial vehicles,” 110

in Proceedings of the 29th ACM Joint Meeting on European Software 111

Engineering Conference and Symposium on the Foundations of 112

Software Engineering, ser. ESEC/FSE 2021. New York, NY, USA: 113

Association for Computing Machinery, 2021, p. 20–31. [Online]. 114

Available: https://doi.org/10.1145/3468264.3468559 115

[98] J. Wang, Y. Jiang, T. Su, S. Li, C. Xu, J. Lu, and Z. Su, “Detecting 116

non-crashing functional bugs in android apps via deep-state 117

differential analysis,” in Proceedings of the 30th ACM Joint European 118

Software Engineering Conference and Symposium on the Foundations 119

of Software Engineering, ser. ESEC/FSE 2022. New York, NY, 120

USA: Association for Computing Machinery, 2022, p. 434–446. 121

[Online]. Available: https://doi.org/10.1145/3540250.3549170 122

[99] T. Wang, Q. Xu, X. Chang, W. Dou, J. Zhu, J. Xie, Y. Deng, J. Yang, 123

J. Yang, J. Wei, and T. Huang, “Characterizing and detecting bugs 124

in wechat mini-programs,” in Proceedings of the 44th International 125

Conference on Software Engineering, ser. ICSE ’22. New York, NY, 126

USA: Association for Computing Machinery, 2022, p. 363–375. 127

[Online]. Available: https://doi.org/10.1145/3510003.3510114 128

[100] T. Wang, Z. Jia, S. Li, S. Zheng, Y. Yu, E. Xu, S. Peng, and 129

X. Liao, “Understanding and detecting on-the-fly configuration 130

bugs,” in 2023 IEEE/ACM 45th International Conference on Software 131

Engineering (ICSE), 2023, pp. 628–639. 132

https://github.com/prometheus-community/helm-charts/issues/2950
https://github.com/prometheus-community/helm-charts/issues/2950
https://github.com/prometheus-community/helm-charts/issues/2950
https://doi.org/10.1145/3377811.3380409
https://doi.org/10.1145/3579639
https://medium.com/@ravipatel.it/introduction-to-container-orchestration-e219e36007ab
https://medium.com/@ravipatel.it/introduction-to-container-orchestration-e219e36007ab
https://medium.com/@ravipatel.it/introduction-to-container-orchestration-e219e36007ab
https://doi.org/10.1145/3188720
https://doi.org/10.1145/1414004.1414030
https://www.sec.gov/Archives/edgar/data/1713445/000162828024006294/reddits-1q423.htm
https://www.sec.gov/Archives/edgar/data/1713445/000162828024006294/reddits-1q423.htm
https://www.sec.gov/Archives/edgar/data/1713445/000162828024006294/reddits-1q423.htm
https://doi.ieeecomputersociety.org/10.1109/CSEET66350.2025.00037
https://doi.ieeecomputersociety.org/10.1109/CSEET66350.2025.00037
https://doi.ieeecomputersociety.org/10.1109/CSEET66350.2025.00037
https://doi.org/10.1145/3468264.3468591
https://doi.org/10.1145/2851613.2851908
https://doi.org/10.1145/2851613.2851908
https://doi.org/10.1145/2851613.2851908
https://snyk.io/learn/container-security/container-orchestration/
https://snyk.io/learn/container-security/container-orchestration/
https://snyk.io/learn/container-security/container-orchestration/
https://docs.kubelinter.io/#/
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1145/3468264.3468559
https://doi.org/10.1145/3540250.3549170
https://doi.org/10.1145/3510003.3510114

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING xxi

[101] S. Wickramasinghe, “Static code analysis: The complete1

guide to getting started with sca,” 2023, accessed: 2024-06-2

23. [Online]. Available: https://www.splunk.com/en_us/blog/3

learn/static-code-analysis.html4

[102] B. Xu, S. Wu, J. Xiao, H. Jin, Y. Zhang, G. Shi, T. Lin, J. Rao, L. Yi,5

and J. Jiang, “Sledge: Towards efficient live migration of docker6

containers,” in 2020 IEEE 13th International Conference on Cloud7

Computing (CLOUD), 2020, pp. 321–328.8

[103] Q. Xu, Y. Gao, and J. Wei, “An empirical study on kubernetes9

operator bugs,” in Proceedings of the 33nd ACM SIGSOFT Interna-10

tional Symposium on Software Testing and Analysis, ser. ISSTA 2024.11

New York, NY, USA: Association for Computing Machinery,12

2024.13

[104] H. Yang, Y. Nong, T. Zhang, X. Luo, and H. Cai,14

“Learning to detect and localize multilingual bugs,” Proc. ACM15

Softw. Eng., vol. 1, no. FSE, jul 2024. [Online]. Available:16

https://doi.org/10.1145/366080417

[105] Y. Yang, W. Shen, B. Ruan, W. Liu, and K. Ren, “Security chal-18

lenges in the container cloud,” 12 2021, pp. 137–145.19

[106] Yannh, “kubeconform,” Online, 2024, accessed: 2024-06-23.20

[Online]. Available: https://github.com/yannh/kubeconform21

[107] J. Yu, X. X. Xie, C. Zhang, S. Chen, Y. Li, and W. Shen, “Bugs22

in pods: Understanding bugs in container runtime systems,” in23

Proceedings of the 33nd ACM SIGSOFT International Symposium on24

Software Testing and Analysis, ser. ISSTA 2024. New York, NY,25

USA: Association for Computing Machinery, 2024.26

[108] Zalando, “Issues with postgres-ui-operator v1.10.0,” 2023,27

accessed: 2024-06-23. [Online]. Available: https://github.com/28

zalando/postgres-operator/issues/230229

[109] Zegl, “Kube-score,” Online, 2024, accessed: 2024-06-23. [Online].30

Available: https://github.com/zegl/kube-score31

[110] J. Zhang, R. Piskac, E. Zhai, and T. Xu, “Static detection of silent32

misconfigurations with deep interaction analysis,” Proc. ACM33

Program. Lang., vol. 5, no. OOPSLA, oct 2021.34

[111] U. Zhang, Yue Paul, , and A. Rahman, “Con-shifu docker35

image,” https://hub.docker.com/r/zyue110026/conshifu-tool,36

2024, [Online; accessed 12-Jan-2025].37

[112] ——, “Replication package for paper,” https://doi.org/10.6084/38

m9.figshare.26511229.v1, 2024, [Online; accessed 12-Jan-2025].39

[113] Y. Zhang, R. Meredith, W. Reeves, J. Coriolano, M. A. Babar,40

and A. Rahman, “Does generative ai generate smells related to41

container orchestration?: An exploratory study with kubernetes42

manifests,” in Proceedings of the 21st International Conference on43

Mining Software Repositories, 2024, pp. 192–196.44

[114] Y. Zhang, J. Murphy, and A. Rahman, “Come for syntax, stay45

for speed, write secure code: an empirical study of security46

weaknesses in julia programs,” Empirical Software Engineering,47

vol. 30, no. 2, p. 58, 2025.48

[115] W. Zheng, C. Feng, T. Yu, X. Yang, and X. Wu, “Towards49

understanding bugs in an open source cloud management stack:50

An empirical study of openstack software bugs,” J. Syst. Softw.,51

vol. 151, no. C, p. 210–223, May 2019. [Online]. Available:52

https://doi.org/10.1016/j.jss.2019.02.02553

Yue Zhang

Yue Zhang Yue Zhang is a PhD student at54

Auburn University. Her research interests is in55

software engineering and data science. She re-56

ceived the B.E. in Computer Science and Tech-57

nology from the Anhui Jianzhu University, Hefei,58

China, in 2021.59

60

Uchswas Paul Uchswas Paul is a Ph.D. student 61

in Computer Science at North Carolina State 62

University, USA. He earned his bachelor’s de- 63

gree from Khulna University of Engineering and 64

Technology in 2018. Before joining his doctorate, 65

he gained experience in industry and academia. 66

His research interests lie in software engineering 67

and large language models. 68

69

Marcelo d’Amorim Marcelo d’Amorim is an As- 70

sociate Professor in Computer Science at the 71

North Carolina State University, USA. He ob- 72

tained his PhD from the University of Illinois at 73

Urbana-Champaign in 2007 and his MS and BS 74

degrees from UFPE, Brazil, in 2001 and 1997, 75

respectively. Marcelo’s research goal is to help 76

developers build correct software. He is inter- 77

ested in preventing, finding, diagnosing, and re- 78

pairing software bugs and vulnerabilities. 79

80

Akond Rahman Akond Rahman is an assis- 81

tant professor at Auburn University. His research 82

interests include DevOps and secure software 83

development. He graduated with a PhD from 84

North Carolina State University, an M.Sc. in 85

Computer Science and Engineering from Uni- 86

versity of Connecticut, and a B.Sc. in Computer 87

Science and Engineering from Bangladesh Uni- 88

versity of Engineering and Technology. He won 89

the ACM SIGSOFT Doctoral Symposium Award 90

at ICSE in 2018, the ACM SIGSOFT Distin- 91

guished Paper Award at ICSE in 2019, the CSC Distinguished Dis- 92

sertation Award, and the COE Distinguished Dissertation Award from 93

NC State in 2020. He actively collaborates with industry practitioners 94

from GitHub, WindRiver, and others. To know more about his work visit 95

https://akondrahman.github.io/ 96

https://www.splunk.com/en_us/blog/learn/static-code-analysis.html
https://www.splunk.com/en_us/blog/learn/static-code-analysis.html
https://www.splunk.com/en_us/blog/learn/static-code-analysis.html
https://doi.org/10.1145/3660804
https://github.com/yannh/kubeconform
https://github.com/zalando/postgres-operator/issues/2302
https://github.com/zalando/postgres-operator/issues/2302
https://github.com/zalando/postgres-operator/issues/2302
https://github.com/zegl/kube-score
https://hub.docker.com/r/zyue110026/conshifu-tool
https://doi.org/10.6084/m9.figshare.26511229.v1
https://doi.org/10.6084/m9.figshare.26511229.v1
https://doi.org/10.6084/m9.figshare.26511229.v1
https://doi.org/10.1016/j.jss.2019.02.025

	Introduction
	Background
	RQ1: Categories of Defects in Kubernetes Configuration Scripts
	Methodology
	Identify Defects from OSS projects
	Derive Defect Categories
	Scoping Review

	Answer to RQ1
	Answer to RQ1: Defect Categories
	Comparison with Defect Categories for Previously-studied Software Systems
	Results for RQ1: Frequency

	RQ2: Consequences and Fix Patterns
	Methodology
	Deriving Consequences
	Deriving Fix Patterns

	Answer to RQ2
	Answer to RQ2: Consequences
	Results for RQ2: Fix Patterns

	RQ3: Evaluation of Static Analysis Tools for Detecting Defects
	RQ3.a: Defect Categories Supported by Static Analysis Tools
	Methodology
	Results for RQ3.a

	RQ3.b: Defect Detection with ConShifu
	Methodology
	Results for RQ3.b

	Discussion
	Significance of Our Empirical Study
	Implications of Our Findings
	Prioritizing Validation Efforts Based on Defect Frequency
	`Shift Left' Approach Towards Defect Detection
	The Need for Enhancing Static Analysis Tools for Kubernetes
	The Need for Automated Configuration Defect Repair Tools for Kubernetes
	Prioritizing Validation Efforts Based on Consequences
	Opportunities for Automating Configuration Inexecutability Detection

	Threats to Validity

	Related Work
	Prior Research Related with Defect Categorization
	Prior Research Related with Quality Aspects of Kubernetes

	Conclusion
	References
	Biographies
	Yue Zhang
	Uchswas Paul
	Marcelo d'Amorim
	Akond Rahman

